ﻻ يوجد ملخص باللغة العربية
Highly directional and lossless surface wave has significant potential applications in the two-dimensional photonic circuits and devices. Here we experimentally demonstrate a selective Dyakonov surface wave coupling at the interface between a transparent polycarbonate material and nematic liquid crystal 5CB. By controlling the anisotropy of the nematic liquid crystal with an applied magnetic field, a single ray at a certain incident angle from a diverged incident beam can be selectively coupled into surface wave. The implementation of this property may lead to a new generation of on-chip integrated optics and two-dimensional photonic devices.
Dyakonov surface wave existing at the interface with anisotropy offers a promising way of guiding light in two-dimension with almost no loss. However, predicted decades ago, the experimental demonstration of the Dyakonov surface wave seems always cha
In order to ascertain conditions for surface-wave propagation guided by the planar interface of an isotropic dielectric material and a sculptured nematic thin film (SNTF) with periodic nonhomogeneity, we formulated a boundary-value problem, obtained
Novel liquid crystalline (LC) compositions are suggested and studied as elements of LC-nose. This allows for optical detection of several volatile organic compounds (VOCs). Ethanol, toluene, pyridine and acetic acid were detected by means of colorime
We propose a simple scaling theory describing the variation of the mean first passage time (MFPT) $tau(N,M)$ of a regular block copolymer of chain length $N$ and block size $M$ which is dragged through a selective liquid-liquid interface by an extern
Studying basic physical effects sustained in metamaterials characterized by specific constitutive relation is a research topic with a long standing tradition. Besides intellectual curiosity, it derives its importance from the ability to predict obser