ﻻ يوجد ملخص باللغة العربية
Studying basic physical effects sustained in metamaterials characterized by specific constitutive relation is a research topic with a long standing tradition. Besides intellectual curiosity, it derives its importance from the ability to predict observable phenomena that are, if found with an actual metamaterial, a clear indication on its properties. Here, we consider a nonlocal (strong spatial dispersion), lossy, and isotropic metamaterial and study the impact of the nonlocality on the dispersion relation of surface plasmon polaritons sustained at an interface between vacuum and such metamaterial. For that, Fresnel coefficients are calculated and appropriate surface plasmon polaritons existence conditions are being proposed. Predictions regarding the experimentally observable reflection from a frustrated internal reflection geometry are being made. A different behavior for TE and TM polarization is observed. Our work unlocks novel opportunities to seek for traces of the nonlocality in experiments made with nowadays metamaterials.
We have observed laser-like emission of surface plasmon polaritons (SPPs) decoupled to the glass prism in an attenuated total reflection setup. SPPs were excited by optically pumped molecules in a polymeric film deposited on the top of the silver fil
We study the propagation of surface plasmon polaritons (SPPs) on a metal surface which hosts a thin film of a liquid dielectric. The ohmic losses, that are inherently present due to the coupling of SPPs to conductors electron plasma, induce temperatu
We propose a scheme to obtain a low-loss propagation of Airy surface plasmon polaritons (SPPs) along the interface between a dielectric and a negative-index metamaterial (NIMM). We show that, by using the transverse-magnetic mode and the related dest
The interference patterns of the surface plasmon polaritons(SPPs) on the metal surface from a point source are observed. These interference patterns come from the forward SPPs and the reflected one from the obstacles, such as straightedge,corner, and
We propose a scheme to realize a lossless propagation of linear and nonlinear Airy surface polaritons (SPs) via active Raman gain (ARG). The system we suggest is a planar interface superposed by a negative index metamaterial (NIMM) and a dielectric,