ﻻ يوجد ملخص باللغة العربية
We propose a simple scaling theory describing the variation of the mean first passage time (MFPT) $tau(N,M)$ of a regular block copolymer of chain length $N$ and block size $M$ which is dragged through a selective liquid-liquid interface by an external field $B$. The theory predicts a non-Arrhenian $tau$ vs. $B$ relationship which depends strongly on the size of the blocks, $M$, and rather weakly on the total polymer length, $N$. The overall behavior is strongly influenced by the degree of selectivity between the two solvents $chi$. The variation of $tau(N,M)$ with $N$ and $M$ in the regimes of weak and strong selectivity of the interface is also studied by means of computer simulations using a dynamic Monte Carlo coarse-grained model. Good qualitative agreement with theoretical predictions is found. The MFPT distribution is found to be well described by a $Gamma$ - distribution. Transition dynamics of ring- and telechelic polymers is also examined and compared to that of the linear chains. The strong sensitivity of the ``capture time $tau(N,M)$ with respect to block length $M$ suggests a possible application as a new type of chromatography designed to separate and purify complex mixtures with different block sizes of the individual macromolecules.
We investigate the translocation of stiff polymers in the presence of binding particles through a nanopore by two-dimensional Langevin dynamics simulations. We find that the mean translocation time shows a minimum as a function of the binding energy
We investigate the dynamics of DNA translocation through a nanopore using 2D Langevin dynamics simulations, focusing on the dependence of the translocation dynamics on the details of DNA sequences. The DNA molecules studied in this work are built fro
Using Langevin dynamics simulations, we investigate the dynamics of chaperone-assisted translocation of a flexible polymer through a nanopore. We find that increasing the binding energy $epsilon$ between the chaperone and the chain and the chaperone
The translocation dynamics of a polymer chain through a nanopore in the absence of an external driving force is analyzed by means of scaling arguments, fractional calculus, and computer simulations. The problem at hand is mapped on a one dimensional
Using analytical techniques and Langevin dynamics simulations, we investigate the dynamics of polymer translocation through a nanochannel embedded in two dimensions under an applied external field. We examine the translocation time for various ratio