ﻻ يوجد ملخص باللغة العربية
Dyakonov surface wave existing at the interface with anisotropy offers a promising way of guiding light in two-dimension with almost no loss. However, predicted decades ago, the experimental demonstration of the Dyakonov surface wave seems always challenging for the weak anisotropic indices from the natural materials. Here we experimentally demonstrated a Dyakonov surface wave mode propagating in a hyperbolic metasurface at the visible frequency. Dyakonov surface waves at the two surfaces of the metasurface can be supported simultaneously by the hyperbolic anisotropy and form a Dyakonov typed mode with low loss and a large allowed angle band. A detailed theoretical analysis and numerical simulations prove that the electric field of such a surface wave mode shows transverse spin, whose direction is determined by the orientations of the hyperbolic anisotropy and surface normal, based on which we experimentally observed the photonic spin Hall effect of the surface wave mode in our metasurface.
A special class of anisotropic media, hyperbolic metamaterials and metasurfaces (HMMs), has attracted much attention in recent years due to its unique abilities to manipulate and engineer electromagnetic waves on the subwavelength scale. Because all
The propagation of Dyakonov surface waves (DSWs) at the planar interface between an isotropic material and a linear electro-optic birefringent material can be dynamically controlled using the Pockels effect. The range of directions for DSW propagatio
We reveal the existence of a new type of surface electromagnetic waves supported by hyperbolic metasurfaces, described by a conductivity tensor with an indefinite signature. We demonstrate that the spectrum of the hyperbolic metasurface waves consist
Switchable and active metasurfaces allow for the realization of beam steering, zoomable metalenses, or dynamic holography. To achieve this goal, one has to combine high-performance metasurfaces with switchable materials that exhibit high refractive i
Highly directional and lossless surface wave has significant potential applications in the two-dimensional photonic circuits and devices. Here we experimentally demonstrate a selective Dyakonov surface wave coupling at the interface between a transpa