ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-Field Radiation Exposure Control in Slot-Loaded Microstrip Antenna: A Characteristic Mode Approach

65   0   0.0 ( 0 )
 نشر من قبل Raed Shubair
 تاريخ النشر 2019
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Microstip antenna topology is commonly loaded with a narrow slot to manipulate the resonance frequency or impedance bandwidth. However, the tuning of the resonance frequency or impedance bandwidth results in the variation of the current and field distributions. In this regard, this work adopts the concept of characteristic modes to gain an initial understanding of the perturbation mechanism of the rectangular patch when loaded with a slot. The performance of microstrip antennas with finite ground plane is then studied using full-wave simulation. It has been found that the distribution of the induced current density is highly dependent on the orientation of the slot The incorporation of a narrow slot suppresses the nearby orthogonal eigen mode and, as a consequence, the radiation behavior is affected. Specifically, in the presence of biological tissues in the near-field region, both antenna input impedance properties and the realized gain are dependent on the slot orientation. Different examples are included for understanding the impact of slot loading on the energy absorption by biological tissues, by calculating the the specific absorption rate (SAR). The proposed analysis facilitates the design of miniaturized antenna geometries for biomedical applications via systematic loading of narrow slots.


قيم البحث

اقرأ أيضاً

A novel probabilistic sparsity-promoting method for robust near-field (NF) antenna characterization is proposed. It leverages on the measurements-by-design (MebD) paradigm and it exploits some a-priori information on the antenna under test (AUT) to g enerate an over-complete representation basis. Accordingly, the problem at hand is reformulated in a compressive sensing (CS) framework as the retrieval of a maximally-sparse distribution (with respect to the overcomplete basis) from a reduced set of measured data and then it is solved by means of a Bayesian strategy. Representative numerical results are presented to, also comparatively, assess the effectiveness of the proposed approach in reducing the burden/cost of the acquisition process as well as to mitigate (possible) truncation errors when dealing with space-constrained probing systems.
Recently, multi-mode antennas have been studied for communication as well as localization purposes. In this work, the capabilities provided by a single planar multi-mode radiator as a steerable multi-port antenna are explored. As an original contribu tion, the radiation characteristics of individual groups of modes of the single radiator are combined to optimize beamforming performance. Three possible codebook realizations are studied and compared. A new optimization criterion, gain by element factor, is introduced.
With the massive increase in the popularity of smartphones and mobile data applications demanding bandwidth requiring data rates of the order of Gigabits per second, exploration of untapped frequency spectrum such as millimeter-wave has begun. Along with providing seamless connectivity and catering to achieving high Quality of Service and Quality of Experience, investigations are ongoing to enhance our knowledge about biological safety at high frequencies. There is a need to ensure safety and reliability for the exposed public and updating the government policies regarding safety standards and regulations. This article is consecrated to provide an insight into health effects pertaining to millimeter frequencies, addressing aspects such as thermal heating in the body tissues with temperature rise, specific absorption rate, power density. As a solution, a proposal has been given for Electromagnetic radiation reduction for the mobile communication system in the form of a proposed mode that is, Thermal Radiation mode endorsing its safe use, promoting Green WCN along with increased energy efficiency and reduced complexity for the future generations to come. The proposal also validates reduced power density, Specific Absorption Rate, and temperature elevation produced in the human tissue when compared to other models in the form of simulation results obtained. It can increase the safety and reliability of 5G and beyond i.e. 6G networks in the future.
Internet of things (IoT) is one of main paradigms for 5G wireless systems. Due to high connection density, interference from other sources is a key problem in IoT networks. Especially, it is more difficult to find a solution to manage interference in uncoordinated networks than coordinated system. In this work, we consider 3D topology of uncoordinated IoT network and propose interference mitigation scheme with respect to 3D antenna radiation pattern. In 2D topology network, the radiation pattern of dipole antenna can be assumed as onmi-directional. We show the variance of antenna gain on dipole antenna in 3D topology, consider the simultaneous use of three orthogonal dipole antennas, and compare the system performance depending on different antenna configurations. Our simulation results show that proper altitude of IoT devices can extensively improve the system performance.
Thermal control is of critical importance for normal operation of spacecraft. Given thermal radiation is the only means of heat dissipation in space, an efficient thermal control approach for spacecraft is to coat the radiator with a tunable-emittanc e skin that can tune its heat dissipation according to various thermal conditions. The existing schemes solely relying on far-field thermal radiation, which are based on mechanical, electrochromic or thermochromic working principles, are difficult to combine the advantages of all-solid-state structure, actively and accurate tuning, and large tuning range of heat flux. In this work, we propose a near-field radiation assisted (NFRA) smart skin for thermal control which can tune the heat rejection accurately and in a large range. It contains a metal-insulator-semiconductor (MIS) structure, where the carrier distribution in the semiconductor layer can be electrically altered. In this way, the near-field heat flux, and ultimately the skin emission power expressed using effective emittance, can be controlled as a function of the applied voltage. The variation range of the effective emittance can exceed 0.7 when adjusting the applied voltage from -10 V to 100 V with our preliminary design. This work opens a new way of smart skin design for active spacecraft thermal control.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا