ﻻ يوجد ملخص باللغة العربية
A novel probabilistic sparsity-promoting method for robust near-field (NF) antenna characterization is proposed. It leverages on the measurements-by-design (MebD) paradigm and it exploits some a-priori information on the antenna under test (AUT) to generate an over-complete representation basis. Accordingly, the problem at hand is reformulated in a compressive sensing (CS) framework as the retrieval of a maximally-sparse distribution (with respect to the overcomplete basis) from a reduced set of measured data and then it is solved by means of a Bayesian strategy. Representative numerical results are presented to, also comparatively, assess the effectiveness of the proposed approach in reducing the burden/cost of the acquisition process as well as to mitigate (possible) truncation errors when dealing with space-constrained probing systems.
This paper investigates the problem of joint massive devices separation and channel estimation for a reconfigurable intelligent surface (RIS)-aided unsourced random access (URA) scheme in the sixth-generation (6G) wireless networks. In particular, by
Reconfigurable intelligent surface (RIS) has been recognized as a potential technology for 5G beyond and attracted tremendous research attention. However, channel estimation in RIS-aided system is still a critical challenge due to the excessive amoun
1-bit compressive sensing aims to recover sparse signals from quantized 1-bit measurements. Designing efficient approaches that could handle noisy 1-bit measurements is important in a variety of applications. In this paper we use the approximate mess
In this paper, we consider massive multiple-input-multiple-output (MIMO) communication systems with a uniform planar array (UPA) at the base station (BS) and investigate the downlink precoding with imperfect channel state information (CSI). By exploi
Greedy algorithms are popular in compressive sensing for their high computational efficiency. But the performance of current greedy algorithms can be degenerated seriously by noise (both multiplicative noise and additive noise). A robust version of g