ﻻ يوجد ملخص باللغة العربية
Recently, multi-mode antennas have been studied for communication as well as localization purposes. In this work, the capabilities provided by a single planar multi-mode radiator as a steerable multi-port antenna are explored. As an original contribution, the radiation characteristics of individual groups of modes of the single radiator are combined to optimize beamforming performance. Three possible codebook realizations are studied and compared. A new optimization criterion, gain by element factor, is introduced.
Increasing the number of transmit and receive elements in multiple-input-multiple-output (MIMO) antenna arrays imposes a substantial increase in hardware and computational costs. We mitigate this problem by employing a reconfigurable MIMO array where
In this paper, we consider a massive multiple-input-multiple-output (MIMO) downlink system that improves the hardware efficiency by dynamically selecting the antenna subarray and utilizing 1-bit phase shifters for hybrid beamforming. To maximize the
Transmit beamforming is a simple multi-antenna technique for increasing throughput and the transmission range of a wireless communication system. The required feedback of channel state information (CSI) can potentially result in excessive overhead es
Some important indoor localization applications, such as localizing a lost kid in a shopping mall, call for a new peer-to-peer localization technique that can localize an individuals smartphone or wearables by directly using anothers on-body devices
Antenna selection (AS) is regarded as one of the most prospective technologies to reduce hardware cost but keep relatively high spectral efficiency in multi-antenna systems. By selecting a subset of antennas to transceive messages, AS greatly allevia