ﻻ يوجد ملخص باللغة العربية
Internet of things (IoT) is one of main paradigms for 5G wireless systems. Due to high connection density, interference from other sources is a key problem in IoT networks. Especially, it is more difficult to find a solution to manage interference in uncoordinated networks than coordinated system. In this work, we consider 3D topology of uncoordinated IoT network and propose interference mitigation scheme with respect to 3D antenna radiation pattern. In 2D topology network, the radiation pattern of dipole antenna can be assumed as onmi-directional. We show the variance of antenna gain on dipole antenna in 3D topology, consider the simultaneous use of three orthogonal dipole antennas, and compare the system performance depending on different antenna configurations. Our simulation results show that proper altitude of IoT devices can extensively improve the system performance.
Due to dense deployments of Internet of things (IoT) networks, interference management becomes a critical challenge. With the proliferation of aerial IoT devices, such as unmanned aerial vehicles (UAVs), interference characteristics in 3D environment
This paper explores the effects of three-dimensional (3D) antenna radiation pattern and backhaul constraint on optimal 3D path planning problem of an unmanned aerial vehicle (UAV), in interference prevalent downlink cellular networks. We consider a c
In practice, the finite number of samples of the spherical radiation pattern or antenna gain are taken on the sphere for both the reconstruction of the antenna radiation pattern and the computation of mobile handset performance measures such as direc
Partially-overlapping tones (POT) are known to help mitigate co-channel interference in uncoordinated multi-carrier networks by introducing intentional frequency offsets (FOs) to the transmitted signals. In this paper, we explore the use of (POT) wit
The proliferation of wireless devices in recent years has caused a spectrum shortage, which led the scientific community to explore the potential of using terahertz (THz) communications. However, THz systems suffer from severe path attenuation, block