ترغب بنشر مسار تعليمي؟ اضغط هنا

Manipulation of exciton and trion quasiparticles in monolayer WS2 via charge transfer

221   0   0.0 ( 0 )
 نشر من قبل Satyaprakash Sahoo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Charge doping in transition metal dichalcogenide is currently a subject of high importance for future electronic and optoelectronic applications. Here we demonstrate chemical doping in CVD grown monolayer (1L) of WS2 by a few commonly used laboratory solvents by investigating the room temperature photoluminescence (PL). The appearance of distinct trionic emission in the PL spectra and quenched PL intensities suggest n-type doping in WS2. The temperature-dependent PL spectra of the doped 1L-WS2 reveal significant enhancement of trion emission intensity over the excitonic emission at low temperature indicating the stability of trion at low temperature. The temperature dependent exciton-trion population dynamic has been modeled using the law of mass action of trion formation. These results shed light on the solution-based chemical doping in 1L WS2 and its profound effect on the photoluminescence which is essential for the control of optical and electrical properties for optoelectronics applications.

قيم البحث

اقرأ أيضاً

Monolayer transition metal dichalcogenides (TMDs) are direct gap semiconductors emerging promising applications in diverse optoelectronic devices. To improve performance, recent investigations have been systematically focused on the tuning of their o ptical properties. However, an all-optical approach with the reversible feature is still a challenge. Here we demonstrate the tunability of the photoluminescence (PL) properties of monolayer WS2 via laser irradiation. The modulation of PL intensity, as well as the conversion between neutral exciton and charged trion have been readily and reversibly achieved by using different laser power densities. We attribute the reversible manipulation to the laser-assisted adsorption and desorption of gas molecules, which will deplete or release free electrons from the surface of WS2 and thus modify its PL properties. This all-optical manipulation, with advantages of reversibility, quantitative control, and high spatial resolution, suggests promising applications of TMDs monolayers in optoelectronic and nanophotonic applications, such as optical data storage, micropatterning, and display.
66 - Aida Hichri 2016
The ultrathin transition metal dichalcogenides (TMDs) have emerged as promising materials for various applications using two dimensional (2D) semiconductors. They have attracted increasing attention due to their unique optical properties originate fr om neutral and charged excitons. Here, we report negatively charged exciton formation in monolayer TMDs, notably tungsten disulfide WS2. Our theory is based on an effective mass model of neutral and charged excitons, parameterized by ab-initio calculations. Taking into the account the strong correlation between the monolayer WS2 and the surrounding dielectric environment, our theoretical results are in good agreement with one-photon photoluminescence (PL) and reflectivity measurements. We also show that the exciton state with p-symmetry, experimentally observed by two-photon PL emission, is energetically below the 2s-state. We use the equilibrium mass action law, to quantify the relative weight of exciton and trion PL. We show that exciton and trion emission can be tuned and controlled by external parameters like temperature, pumping and injection electrons. Finally, in comparison with experimental measurements, we show that exciton emission in monolayer tungsten dichalcogenides is substantially reduced. This feature suggests that free exciton can be trapped in disordered potential wells to form a localized exciton and therefore offers a route toward novel optical properties.
The optical properties of monolayer transition metal dichalcogenides (TMDC) feature prominent excitonic natures. Here we report an experimental approach toward measuring the exciton binding energy of monolayer WS2 with linear differential transmissio n spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE). TP-PLE measurements show the exciton binding energy of 0.71eV around K valley in the Brillouin zone. The trion binding energy of 34meV, two-photon absorption cross section 4X10^{4}cm^{2}W^{-2}S^{-1} at 780nm and exciton-exciton annihilation rate around 0.5cm^{2}/s are experimentally obtained.
We report a rare atom-like interaction between excitons in monolayer WS2, measured using ultrafast absorption spectroscopy. At increasing excitation density, the exciton resonance energy exhibits a pronounced redshift followed by an anomalous blueshi ft. Using both material-realistic computation and phenomenological modeling, we attribute this observation to plasma effects and an attraction-repulsion crossover of the exciton-exciton interaction that mimics the Lennard-Jones potential between atoms. Our experiment demonstrates a strong analogy between excitons and atoms with respect to inter-particle interaction, which holds promise to pursue the predicted liquid and crystalline phases of excitons in two-dimensional materials.
Moire superlattices in van der Waals heterostructures have emerged as a powerful tool for engineering novel quantum phenomena. Here we report the observation of a correlated interlayer exciton insulator in a double-layer heterostructure composed of a WSe2 monolayer and a WS2/WSe2 moire bilayer that are separated by an ultrathin hexagonal boron nitride (hBN). The moire WS2/WSe2 bilayer features a Mott insulator state at hole density p/p0 = 1, where p0 corresponds to one hole per moire lattice site. When electrons are added to the Mott insulator in the WS2/WSe2 moire bilayer and an equal number of holes are injected into the WSe2 monolayer, a new interlayer exciton insulator emerges with the holes in the WSe2 monolayer and the electrons in the doped Mott insulator bound together through interlayer Coulomb interactions. The excitonic insulator is stable up to a critical hole density of ~ 0.5p0 in the WSe2 monolayer, beyond which the system becomes metallic. Our study highlights the opportunities for realizing novel quantum phases in double-layer moire systems due to the interplay between the moire flat band and strong interlayer electron interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا