ﻻ يوجد ملخص باللغة العربية
Moire superlattices in van der Waals heterostructures have emerged as a powerful tool for engineering novel quantum phenomena. Here we report the observation of a correlated interlayer exciton insulator in a double-layer heterostructure composed of a WSe2 monolayer and a WS2/WSe2 moire bilayer that are separated by an ultrathin hexagonal boron nitride (hBN). The moire WS2/WSe2 bilayer features a Mott insulator state at hole density p/p0 = 1, where p0 corresponds to one hole per moire lattice site. When electrons are added to the Mott insulator in the WS2/WSe2 moire bilayer and an equal number of holes are injected into the WSe2 monolayer, a new interlayer exciton insulator emerges with the holes in the WSe2 monolayer and the electrons in the doped Mott insulator bound together through interlayer Coulomb interactions. The excitonic insulator is stable up to a critical hole density of ~ 0.5p0 in the WSe2 monolayer, beyond which the system becomes metallic. Our study highlights the opportunities for realizing novel quantum phases in double-layer moire systems due to the interplay between the moire flat band and strong interlayer electron interactions.
Stripe phases, in which the rotational symmetry of charge density is spontaneously broken, occur in many strongly correlated systems with competing interactions. One representative example is the copper-oxide superconductors, where stripe order is th
We report the nanoscale conductivity imaging of correlated electronic states in angle-aligned WSe2/WS2 heterostructures using microwave impedance microscopy. The noncontact microwave probe allows us to observe the Mott insulating state with one hole
Transition metal dichalcogenide (TMD) moire heterostructures provide an ideal platform to explore the extended Hubbard model1 where long-range Coulomb interactions play a critical role in determining strongly correlated electron states. This has led
Moire superlattices of van der Waals materials, such as twisted graphene and transitional metal dichalcogenides, have recently emerged as a fascinating platform to study strongly correlated states in two dimensions, thanks to the strong electron inte
Moire superlattices provide a powerful way to engineer properties of electrons and excitons in two-dimensional van der Waals heterostructures. The moire effect can be especially strong for interlayer excitons, where electrons and holes reside in diff