ترغب بنشر مسار تعليمي؟ اضغط هنا

Exciton, trion and localized exciton in monolayer Tungsten Disulfide

67   0   0.0 ( 0 )
 نشر من قبل Sihem Jaziri s.j
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Aida Hichri




اسأل ChatGPT حول البحث

The ultrathin transition metal dichalcogenides (TMDs) have emerged as promising materials for various applications using two dimensional (2D) semiconductors. They have attracted increasing attention due to their unique optical properties originate from neutral and charged excitons. Here, we report negatively charged exciton formation in monolayer TMDs, notably tungsten disulfide WS2. Our theory is based on an effective mass model of neutral and charged excitons, parameterized by ab-initio calculations. Taking into the account the strong correlation between the monolayer WS2 and the surrounding dielectric environment, our theoretical results are in good agreement with one-photon photoluminescence (PL) and reflectivity measurements. We also show that the exciton state with p-symmetry, experimentally observed by two-photon PL emission, is energetically below the 2s-state. We use the equilibrium mass action law, to quantify the relative weight of exciton and trion PL. We show that exciton and trion emission can be tuned and controlled by external parameters like temperature, pumping and injection electrons. Finally, in comparison with experimental measurements, we show that exciton emission in monolayer tungsten dichalcogenides is substantially reduced. This feature suggests that free exciton can be trapped in disordered potential wells to form a localized exciton and therefore offers a route toward novel optical properties.

قيم البحث

اقرأ أيضاً

Raman scattering and photoluminescence (PL) emission are used to investigate a single layer of tungsten disulfide (WS$_{2}$) obtained by exfoliating n-type bulk crystals. Direct gap emission with both neutral and charged exciton recombination is obse rved in the low temperature PL spectra. The ratio between the trion and exciton emission can be tuned simply by varying the excitation power. Moreover, the intensity of the trion emission can be independently tuned using additional sub band gap laser excitation.
Charge doping in transition metal dichalcogenide is currently a subject of high importance for future electronic and optoelectronic applications. Here we demonstrate chemical doping in CVD grown monolayer (1L) of WS2 by a few commonly used laboratory solvents by investigating the room temperature photoluminescence (PL). The appearance of distinct trionic emission in the PL spectra and quenched PL intensities suggest n-type doping in WS2. The temperature-dependent PL spectra of the doped 1L-WS2 reveal significant enhancement of trion emission intensity over the excitonic emission at low temperature indicating the stability of trion at low temperature. The temperature dependent exciton-trion population dynamic has been modeled using the law of mass action of trion formation. These results shed light on the solution-based chemical doping in 1L WS2 and its profound effect on the photoluminescence which is essential for the control of optical and electrical properties for optoelectronics applications.
A method is presented for optically preparing WS2 monolayers to luminesce from only the charged exciton (trion) state--completely suppressing the neutral exciton. When isolating the trion state, we observed changes in the Raman A1g intensity and an e nhanced feature on the low energy side of the E12g peak. Photoluminescence and optical reflectivity measurements confirm the existence of the prepared trion state. This technique also prepares intermediate regimes with controlled luminescence amplitudes of the neutral and charged exciton. This effect is reversible by exposing the sample to air, indicating the change is mitigated by surface interactions with the ambient environment. This method provides a tool to modify optical emission energy and to isolate physical processes in this and other two-dimensional materials.
Inversion symmetry breaking and three-fold rotation symmetry grant the valley degree of freedom to the robust exciton in monolayer transition metal dichalcogenides (TMDCs), which can be exploited for valleytronics applications. However, the short lif etime of the exciton significantly constrains the possible applications. In contrast, dark exciton could be long-lived but does not necessarily possess the valley degree of freedom. In this work, we report the identification of the momentum-dark, intervalley exciton in monolayer WSe2 through low-temperature magneto-photoluminescence (PL) spectra. Interestingly, the intervalley exciton is brightened through the emission of a chiral phonon at the corners of the Brillouin zone (K point), and the pseudoangular momentum (PAM) of the phonon is transferred to the emitted photon to preserve the valley information. The chiral phonon energy is determined to be ~ 23 meV, based on the experimentally extracted exchange interaction (~ 7 meV), in excellent agreement with the theoretical expectation of 24.6 meV. The long-lived intervalley exciton with valley degree of freedom adds an exciting quasiparticle for valleytronics, and the coupling between the chiral phonon and intervalley exciton furnishes a venue for valley spin manipulation.
Monolayer phosphorene provides a unique two-dimensional (2D) platform to investigate the fundamental dynamics of excitons and trions (charged excitons) in reduced dimensions. However, owing to its high instability, unambiguous identification of monol ayer phosphorene has been elusive. Consequently, many important fundamental properties, such as exciton dynamics, remain underexplored. We report a rapid, noninvasive, and highly accurate approach based on optical interferometry to determine the layer number of phosphorene, and confirm the results with reliable photoluminescence measurements. Furthermore, we successfully probed the dynamics of excitons and trions in monolayer phosphorene by controlling the photo-carrier injection in a relatively low excitation power range. Based on our measured optical gap and the previously measured electronic energy gap, we determined the exciton binding energy to be ~0.3 eV for the monolayer phosphorene on SiO2/Si substrate, which agrees well with theoretical predictions. A huge trion binding energy of ~100 meV was first observed in monolayer phosphorene, which is around five times higher than that in transition metal dichalcogenide (TMD) monolayer semiconductor, such as MoS2. The carrier lifetime of exciton emission in monolayer phosphorene was measured to be ~220 ps, which is comparable to those in other 2D TMD semiconductors. Our results open new avenues for exploring fundamental phenomena and novel optoelectronic applications using monolayer phosphorene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا