ﻻ يوجد ملخص باللغة العربية
Monolayer transition metal dichalcogenides (TMDs) are direct gap semiconductors emerging promising applications in diverse optoelectronic devices. To improve performance, recent investigations have been systematically focused on the tuning of their optical properties. However, an all-optical approach with the reversible feature is still a challenge. Here we demonstrate the tunability of the photoluminescence (PL) properties of monolayer WS2 via laser irradiation. The modulation of PL intensity, as well as the conversion between neutral exciton and charged trion have been readily and reversibly achieved by using different laser power densities. We attribute the reversible manipulation to the laser-assisted adsorption and desorption of gas molecules, which will deplete or release free electrons from the surface of WS2 and thus modify its PL properties. This all-optical manipulation, with advantages of reversibility, quantitative control, and high spatial resolution, suggests promising applications of TMDs monolayers in optoelectronic and nanophotonic applications, such as optical data storage, micropatterning, and display.
Monolayer phosphorene provides a unique two-dimensional (2D) platform to investigate the fundamental dynamics of excitons and trions (charged excitons) in reduced dimensions. However, owing to its high instability, unambiguous identification of monol
Charge doping in transition metal dichalcogenide is currently a subject of high importance for future electronic and optoelectronic applications. Here we demonstrate chemical doping in CVD grown monolayer (1L) of WS2 by a few commonly used laboratory
In this work, we show how domain engineered lithium niobate can be used to selectively dope monolayer MoSe2 and WSe2 and demonstrate that these ferroelectric domains can significantly enhance or inhibit photoluminescence (PL) with the most dramatic m
The ultrathin transition metal dichalcogenides (TMDs) have emerged as promising materials for various applications using two dimensional (2D) semiconductors. They have attracted increasing attention due to their unique optical properties originate fr
The optical properties of monolayer transition metal dichalcogenides (TMDC) feature prominent excitonic natures. Here we report an experimental approach toward measuring the exciton binding energy of monolayer WS2 with linear differential transmissio