ﻻ يوجد ملخص باللغة العربية
In this paper, the efficient hinging hyperplanes (EHH) neural network is proposed based on the model of hinging hyperplanes (HH). The EHH neural network is a distributed representation, the training of which involves solving several convex optimization problems and is fast. It is proved that for every EHH neural network, there is an equivalent adaptive hinging hyperplanes (AHH) tree, which was also proposed based on the model of HH and find good applications in system identification. The construction of the EHH neural network includes 2 stages. First the initial structure of the EHH neural network is randomly determined and the Lasso regression is used to choose the appropriate network. To alleviate the impact of randomness, secondly, the stacking strategy is employed to formulate a more general network structure. Different from other neural networks, the EHH neural network has interpretability ability, which can be easily obtained through its ANOVA decomposition (or interaction matrix). The interpretability can then be used as a suggestion for input variable selection. The EHH neural network is applied in nonlinear system identification, the simulation results show that the regression vector selected is reasonable and the identification speed is fast, while at the same time, the simulation accuracy is satisfactory.
ReLU (rectified linear units) neural network has received significant attention since its emergence. In this paper, a univariate ReLU (UReLU) neural network is proposed to both modelling the nonlinear dynamic system and revealing insights about the s
We study the problem of sparse nonlinear model recovery of high dimensional compositional functions. Our study is motivated by emerging opportunities in neuroscience to recover fine-grained models of biological neural circuits using collected measure
Various phenomena in biology, physics, and engineering are modeled by differential equations. These differential equations including partial differential equations and ordinary differential equations can be converted and represented as integral equat
Distillation process is a complex process of conduction, mass transfer and heat conduction, which is mainly manifested as follows: The mechanism is complex and changeable with uncertainty; the process is multivariate and strong coupling; the system i
Model instability and poor prediction of long-term behavior are common problems when modeling dynamical systems using nonlinear black-box techniques. Direct optimization of the long-term predictions, often called simulation error minimization, leads