ترغب بنشر مسار تعليمي؟ اضغط هنا

Legendre Deep Neural Network (LDNN) and its application for approximation of nonlinear Volterra Fredholm Hammerstein integral equations

102   0   0.0 ( 0 )
 نشر من قبل Zeinab Hajimohammadi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Various phenomena in biology, physics, and engineering are modeled by differential equations. These differential equations including partial differential equations and ordinary differential equations can be converted and represented as integral equations. In particular, Volterra Fredholm Hammerstein integral equations are the main type of these integral equations and researchers are interested in investigating and solving these equations. In this paper, we propose Legendre Deep Neural Network (LDNN) for solving nonlinear Volterra Fredholm Hammerstein integral equations (VFHIEs). LDNN utilizes Legendre orthogonal polynomials as activation functions of the Deep structure. We present how LDNN can be used to solve nonlinear VFHIEs. We show using the Gaussian quadrature collocation method in combination with LDNN results in a novel numerical solution for nonlinear VFHIEs. Several examples are given to verify the performance and accuracy of LDNN.



قيم البحث

اقرأ أيضاً

The approximation of solutions to second order Hamilton--Jacobi--Bellman (HJB) equations by deep neural networks is investigated. It is shown that for HJB equations that arise in the context of the optimal control of certain Markov processes the solu tion can be approximated by deep neural networks without incurring the curse of dimension. The dynamics is assumed to depend affinely on the controls and the cost depends quadratically on the controls. The admissible controls take values in a bounded set.
Designing an optimal deep neural network for a given task is important and challenging in many machine learning applications. To address this issue, we introduce a self-adaptive algorithm: the adaptive network enhancement (ANE) method, written as loo ps of the form train, estimate and enhance. Starting with a small two-layer neural network (NN), the step train is to solve the optimization problem at the current NN; the step estimate is to compute a posteriori estimator/indicators using the solution at the current NN; the step enhance is to add new neurons to the current NN. Novel network enhancement strategies based on the computed estimator/indicators are developed in this paper to determine how many new neurons and when a new layer should be added to the current NN. The ANE method provides a natural process for obtaining a good initialization in training the current NN; in addition, we introduce an advanced procedure on how to initialize newly added neurons for a better approximation. We demonstrate that the ANE method can automatically design a nearly minimal NN for learning functions exhibiting sharp transitional layers as well as discontinuous solutions of hyperbolic partial differential equations.
In recent work it has been established that deep neural networks are capable of approximating solutions to a large class of parabolic partial differential equations without incurring the curse of dimension. However, all this work has been restricted to problems formulated on the whole Euclidean domain. On the other hand, most problems in engineering and the sciences are formulated on finite domains and subjected to boundary conditions. The present paper considers an important such model problem, namely the Poisson equation on a domain $Dsubset mathbb{R}^d$ subject to Dirichlet boundary conditions. It is shown that deep neural networks are capable of representing solutions of that problem without incurring the curse of dimension. The proofs are based on a probabilistic representation of the solution to the Poisson equation as well as a suitable sampling method.
We introduced the least-squares ReLU neural network (LSNN) method for solving the linear advection-reaction problem with discontinuous solution and showed that the method outperforms mesh-based numerical methods in terms of the number of degrees of f reedom. This paper studies the LSNN method for scalar nonlinear hyperbolic conservation law. The method is a discretization of an equivalent least-squares (LS) formulation in the set of neural network functions with the ReLU activation function. Evaluation of the LS functional is done by using numerical integration and conservative finite volume scheme. Numerical results of some test problems show that the method is capable of approximating the discontinuous interface of the underlying problem automatically through the free breaking lines of the ReLU neural network. Moreover, the method does not exhibit the common Gibbs phenomena along the discontinuous interface.
The Fredholm integral equations of the first kind are a classical example of ill-posed problem in the sense of Hadamard. If the integral operator is self-adjoint and admits a set of eigenfunctions, then a formal solution can be written in terms of ei genfunction expansions. One of the possible methods of regularization consists in truncating this formal expansion after restricting the class of admissible solutions through a-priori global bounds. In this paper we reconsider various possible methods of truncation from the viewpoint of the $varepsilon$-coverings of compact sets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا