ﻻ يوجد ملخص باللغة العربية
Various phenomena in biology, physics, and engineering are modeled by differential equations. These differential equations including partial differential equations and ordinary differential equations can be converted and represented as integral equations. In particular, Volterra Fredholm Hammerstein integral equations are the main type of these integral equations and researchers are interested in investigating and solving these equations. In this paper, we propose Legendre Deep Neural Network (LDNN) for solving nonlinear Volterra Fredholm Hammerstein integral equations (VFHIEs). LDNN utilizes Legendre orthogonal polynomials as activation functions of the Deep structure. We present how LDNN can be used to solve nonlinear VFHIEs. We show using the Gaussian quadrature collocation method in combination with LDNN results in a novel numerical solution for nonlinear VFHIEs. Several examples are given to verify the performance and accuracy of LDNN.
The approximation of solutions to second order Hamilton--Jacobi--Bellman (HJB) equations by deep neural networks is investigated. It is shown that for HJB equations that arise in the context of the optimal control of certain Markov processes the solu
Designing an optimal deep neural network for a given task is important and challenging in many machine learning applications. To address this issue, we introduce a self-adaptive algorithm: the adaptive network enhancement (ANE) method, written as loo
In recent work it has been established that deep neural networks are capable of approximating solutions to a large class of parabolic partial differential equations without incurring the curse of dimension. However, all this work has been restricted
We introduced the least-squares ReLU neural network (LSNN) method for solving the linear advection-reaction problem with discontinuous solution and showed that the method outperforms mesh-based numerical methods in terms of the number of degrees of f
The Fredholm integral equations of the first kind are a classical example of ill-posed problem in the sense of Hadamard. If the integral operator is self-adjoint and admits a set of eigenfunctions, then a formal solution can be written in terms of ei