ﻻ يوجد ملخص باللغة العربية
ReLU (rectified linear units) neural network has received significant attention since its emergence. In this paper, a univariate ReLU (UReLU) neural network is proposed to both modelling the nonlinear dynamic system and revealing insights about the system. Specifically, the neural network consists of neurons with linear and UReLU activation functions, and the UReLU functions are defined as the ReLU functions respect to each dimension. The UReLU neural network is a single hidden layer neural network, and the structure is relatively simple. The initialization of the neural network employs the decoupling method, which provides a good initialization and some insight into the nonlinear system. Compared with normal ReLU neural network, the number of parameters of UReLU network is less, but it still provide a good approximation of the nonlinear dynamic system. The performance of the UReLU neural network is shown through a Hysteretic benchmark system: the Bouc-Wen system. Simulation results verify the effectiveness of the proposed method.
In this paper, the efficient hinging hyperplanes (EHH) neural network is proposed based on the model of hinging hyperplanes (HH). The EHH neural network is a distributed representation, the training of which involves solving several convex optimizati
Networked dynamic systems are often abstracted as directed graphs, where the observed system processes form the vertex set and directed edges are used to represent non-zero transfer functions. Recovering the exact underlying graph structure of such a
Location of non-stationary forced oscillation (FO) sources can be a challenging task, especially in cases under resonance condition with natural system modes, where the magnitudes of the oscillations could be greater in places far from the source. Th
We consider a cooperative system identification scenario in which an expert agent (teacher) knows a correct, or at least a good, model of the system and aims to assist a learner-agent (student), but cannot directly transfer its knowledge to the stude
The state estimation problem can be solved through different methods. In terms of robustness, an effective approach is represented by the Least Absolute Value (LAV) estimator, though vulnerable to leverage points. Based on a previously proposed theor