ﻻ يوجد ملخص باللغة العربية
We study a ferromagnetic instability in a doped single-band Hubbard model by means of dynamical mean-field theory with the continuous-time quantum Monte Carlo simulations. Examining the effect of the strong correlations in the system on the hypercubic and Bethe lattice, we find that the ferromagnetically ordered state appears in the former, while it does not in the latter. We also reveal that the ferromagnetic order is more stable in the case that the noninteracting DOS exhibits a slower decay in the high-energy region. The present results suggest that, in the strong-coupling regime, the high-energy part of DOS plays an essential role for the emergence of the ferromagnetically ordered state, in contrast to the Stoner criterion justified in the weak interaction limit.
A strong-coupling expansion for models of correlated electrons in any dimension is presented. The method is applied to the Hubbard model in $d$ dimensions and compared with numerical results in $d=1$. Third order expansion of the Green function suffi
We analyze the quantum phase diagram of the Holstein-Hubbard model using an asymptotically exact strong-coupling expansion. We find all sorts of interesting phases including a pair-density wave (PDW), a charge 4e (and even a charge 6e) superconductor
We study a ferromagnetic instability in a single-band Hubbard model on the hypercubic lattice away from half filling. Using dynamical mean-field theory with the continuous-time quantum Monte Carlo simulations based on the segment algorithm, we calcul
The Hubbard model, which augments independent-electron band theory with a single parameter to describe electron-electron correlations, is widely regarded to be the `standard model of condensed matter physics. The model has been remarkably successful
Using linear response theory with the dynamical mean-field approximation we investigate the particle-hole instabilities of the two-band Hubbard model in the vicinity of the spin-state transition. Besides the previously reported high-spin--low-spin or