ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong Coupling Limit of the Holstein-Hubbard Model

103   0   0.0 ( 0 )
 نشر من قبل Zhaoyu Han
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the quantum phase diagram of the Holstein-Hubbard model using an asymptotically exact strong-coupling expansion. We find all sorts of interesting phases including a pair-density wave (PDW), a charge 4e (and even a charge 6e) superconductor, regimes of phase separation, and a variety of distinct charge-density-wave (CDW), spin-density-wave (SDW) and superconducting regimes. We chart the crossovers that occur as a function of the degree of retardation, i.e. the ratio of characteristic phonon frequency to the strength of interactions.



قيم البحث

اقرأ أيضاً

A pair-density-wave (PDW) is a novel superconducting state with an oscillating order parameter. A microscopic mechanism that can give rise to it has been long sought but has not yet been established by any controlled calculation. Here we report a den sity-matrix renormalization group (DMRG) study of an effective $t$-$J$-$V$ model, which is equivalent to the Holstein-Hubbard model in a strong-coupling limit, on long two-, four- and six-leg triangular cylinders. While a state with long-range PDW order is precluded in one dimension, we find strong quasi-long-range PDW order with a divergent PDW susceptibility as well as spontaneous breaking of time-reversal and inversion symmetries. Despite the strong interactions, the underlying Fermi surfaces and electron pockets around the $K$ and $K^prime$ points in the Brillouin zone can be identified. We conclude that the state is valley-polarized and that the PDW arises from intra-pocket pairing with an incommensurate center of mass momentum. In the two-leg case, the exponential decay of spin correlations and the measured central charge $capprox 1$ are consistent with an unusual realization of a Luther-Emery liquid.
We present determinant quantum Monte Carlo simulations of the hole-doped single-band Hubbard-Holstein model on a square lattice, to investigate how quasiparticles emerge when doping a Mott insulator (MI) or a Peierls insulator (PI). The MI regime at large Hubbard interaction $U$ and small relative electron-phonon coupling strength $lambda$ is quickly suppressed upon doping, by drawing spectral weight from the upper Hubbard band and shifting the lower Hubbard band towards the Fermi level, leading to a metallic state with emergent quasiparticles at the Fermi level. On the other hand, the PI regime at large $lambda$ and small $U$ persists out to relatively high doping levels. We study the evolution of the $d$-wave superconducting susceptibility with doping, and find that it increases with lowering temperature in a regime of intermediate values of $U$ and $lambda$.
By using variational wave functions and quantum Monte Carlo techniques, we investigate the interplay between electron-electron and electron-phonon interactions in the two-dimensional Hubbard-Holstein model. Here, the ground-state phase diagram is tri ggered by several energy scales, i.e., the electron hopping $t$, the on-site electron-electron interaction $U$, the phonon energy $omega_0$, and the electron-phonon coupling $g$. At half filling, the ground state is an antiferromagnetic insulator for $U gtrsim 2g^2/omega_0$, while it is a charge-density-wave (or bi-polaronic) insulator for $U lesssim 2g^2/omega_0$. In addition to these phases, we find a superconducting phase that intrudes between them. For $omega_0/t=1$, superconductivity emerges when both $U/t$ and $2g^2/tomega_0$ are small; then, by increasing the value of the phonon energy $omega_0$, it extends along the transition line between antiferromagnetic and charge-density-wave insulators. Away from half filling, phase separation occurs when doping the charge-density-wave insulator, while a uniform (superconducting) ground state is found when doping the superconducting phase. In the analysis of finite-size effects, it is extremely important to average over twisted boundary conditions, especially in the weak-coupling limit and in the doped case.
We analyze the pseudogap phenomenon of hole-doped cuprates via a Feynman-diagrammatic inspection of the Hubbard model. Our approach captures the pivotal interplay between Mott localization and Fermi surface topology beyond weak-coupling spin fluctuat ions, which open a spectral gap near hot spots. We show that strong coupling and particle-hole asymmetry give rise to another mechanism: the spin-fermion vertex develops a large imaginary part. While its real part always suppresses the electronic lifetime, the imaginary part has a twofold effect. For antinodal fermions a gap opening is boosted; conversely, around the node Fermi arcs are protected.
Cooperation and competition between the antiferromagnetic, d-wave superconducting and Mott-insulating states are explored for the two-dimensional Hubbard model including nearest and next-nearest-neighbor hoppings at zero temperature. Using the variat ional cluster approach with clusters of different shapes and sizes up to 10 sites, it is found that the doping-driven transition from a phase with microscopic coexistence of antiferromagnetism and superconductivity to a purely superconducting phase is discontinuous for strong interaction and accompanied by phase separation. At half-filling the system is in an antiferromagnetic Mott-insulating state with vanishing charge compressibility. Upon decreasing the interaction strength U below a certain critical value of roughly U=4 (in units of the nearest-neighbor hopping), however, the filling-dependent magnetic transition changes its character and becomes continuous. Phase separation or, more carefully, the tendency towards the formation of inhomogeneous states disappears. This critical value is in contrast to previous studies, where a much larger value was obtained. Moreover, we find that the system at half-filling undergoes the Mott transition from an insulator to a state with a finite charge compressibility at essentially the same value. The weakly correlated state at half-filling exhibits superconductivity microscopically admixed to the antiferromagnetic order. This scenario suggests a close relation between phase separation and the Mott-insulator physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا