ترغب بنشر مسار تعليمي؟ اضغط هنا

Excitonic Instability at the Spin-State Transition in the Two-Band Hubbard Model

416   0   0.0 ( 0 )
 نشر من قبل Jan Kunes
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using linear response theory with the dynamical mean-field approximation we investigate the particle-hole instabilities of the two-band Hubbard model in the vicinity of the spin-state transition. Besides the previously reported high-spin--low-spin order we find an instability towards triplet excitonic condensate. We discuss the strong and weak coupling limits of the model, in particular, a connection to the spinful hard-core bosons with a nearest-neighbor interaction. Possible realization in LaCoO3 at intermediate temperatures is briefly discussed.

قيم البحث

اقرأ أيضاً

We study the excitonic insulating (EI) phase in the two-band Hubbard models on the Penrose tiling. Performing the real-space mean-field calculations systematically, we obtain the ground state phase diagrams for the vertex and center models. We find t hat, in some regimes, the stable EI phase is induced by small interband interactions. We argue that this originates from the electron-hole pairing for the completely or nearly degenerate states, which are characteristic of the Penrose tiling. We also study spatial distribution of the order parameter, mapping it to the perpendicular space.
Photoinduced dynamics in an excitonic insulator is studied theoretically by using a two-orbital Hubbard model on the square lattice where the excitonic phase in the ground state is characterized by the BCS-BEC crossover as a function of the interorbi tal Coulomb interaction. We consider the case where the order has a wave vector $Q=(0,0)$ and photoexcitation is introduced by a dipole transition. Within the mean-field approximation, we show that the excitonic order can be enhanced by the photoexcitation when the system is initially in the BEC regime of the excitonic phase, whereas it is reduced if the system is initially in the BCS regime. The origin of this difference is discussed from behaviors of momentum distribution functions and momentum-dependent excitonic pair condensation. In particular, we show that the phases of the excitonic pair condensation have an important role in determining whether the excitonic order is enhanced or not.
106 - Yusuke Kamogawa , Joji Nasu , 2019
We study a ferromagnetic instability in a doped single-band Hubbard model by means of dynamical mean-field theory with the continuous-time quantum Monte Carlo simulations. Examining the effect of the strong correlations in the system on the hypercubi c and Bethe lattice, we find that the ferromagnetically ordered state appears in the former, while it does not in the latter. We also reveal that the ferromagnetic order is more stable in the case that the noninteracting DOS exhibits a slower decay in the high-energy region. The present results suggest that, in the strong-coupling regime, the high-energy part of DOS plays an essential role for the emergence of the ferromagnetically ordered state, in contrast to the Stoner criterion justified in the weak interaction limit.
73 - Takemi Yamada , Kaoru Domon , 2016
The three-chain Hubbard model for Ta$_2$NiSe$_5$ known as a candidate material for the excitonic insulator is investigated over the wide range of energy gap $D$ between the two-fold degenerate conduction bands and the nondegenerate valence band inclu ding both semiconducting ($D>0$) and semimetallic ($D<0$) cases. In the semimetallic case, the difference of the band degeneracy inevitably causes the imbalance of each Fermi wavenumber, resulting in a remarkable excitonic state characterized by the condensation of excitons with finite center-of-mass momentum $q$, the so-called Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) excitonic state. With decreasing $D$ corresponding to increasing pressure, the obtained excitonic phase diagram shows a crossover from BEC ($Dsimg 0$) to BCS ($Dsiml 0$) regime, and then shows a distinct phase transition at a certain critical value $D_c(<0)$ from the uniform ($q=0$) to the FFLO ($q e 0$) excitonic state, as expected to be observed in Ta$_2$NiSe$_5$ under high pressure.
We consider a two-orbital Hubbard model with Hund coupling and crystal-field splitting and show that in the vicinity of the high-spin/low-spin transition, crystal-field quenches can induce an excitonic condensation at initial temperatures above the h ighest ordering temperature in equilibrium. This condensation is the effect of an increase in the spin entropy and an associated cooling of the effective electronic temperature. We identify a dynamical phase transition and show that such quenches can result in long-lived nonthermal excitonic condensates which have no analogue in the equilibrium phase diagram. The results are interpreted by means of an effective pseudo-spin model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا