ترغب بنشر مسار تعليمي؟ اضغط هنا

A Bespoke Single-Band Hubbard Model Material

208   0   0.0 ( 0 )
 نشر من قبل Nicola A. Spaldin
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Hubbard model, which augments independent-electron band theory with a single parameter to describe electron-electron correlations, is widely regarded to be the `standard model of condensed matter physics. The model has been remarkably successful at addressing a range of correlation effects in solids, but beyond one dimension its solution is intractable. Much current research aims, therefore, at finding appropriate approximations to the Hubbard model phase diagram. Here we take the new approach of using ab initio electronic structure methods to design a material whose Hamiltonian is that of the single-band Hubbard model. Solution of the Hubbard model will then be available through measurement of the materials properties. After identifying an appropriate crystal class and several appropriate chemistries, we use density functional theory and dynamical mean-field theory to screen for the desired electronic band structure and metal-insulator transition. We then explore the most promising candidates for structural stability and suitability for doping and propose specific materials for subsequent synthesis. Finally, we identify a regime -- that should manifest in our bespoke material -- in which the single-band Hubbard model on a triangular lattice exhibits exotic d-wave superconductivity.



قيم البحث

اقرأ أيضاً

We study a ferromagnetic instability in a single-band Hubbard model on the hypercubic lattice away from half filling. Using dynamical mean-field theory with the continuous-time quantum Monte Carlo simulations based on the segment algorithm, we calcul ate the magnetic susceptibility in the weak and strong coupling regions systematically. We then find how ferromagnetic fluctuations are enhanced when the interaction strength and density of holes are varied. The efficiency of the double flip updates in the Monte Carlo simulations is also addressed.
We study the flat-band ferromagnetic phase of a topological Hubbard model within a bosonization formalism and, in particular, determine the spin-wave excitation spectrum. We consider a square lattice Hubbard model at 1/4-filling whose free-electron t erm is the pi-flux model with topologically nontrivial and nearly flat energy bands. The electron spin is introduced such that the model either explicitly breaks time-reversal symmetry (correlated flat-band Chern insulator) or is invariant under time-reversal symmetry (correlated flat-band $Z_2$ topological insulator). We generalize for flat-band Chern and topological insulators the bosonization formalism [Phys. Rev. B 71, 045339 (2005)] previously developed for the two-dimensional electron gas in a uniform and perpendicular magnetic field at filling factor u=1. We show that, within the bosonization scheme, the topological Hubbard model is mapped into an effective interacting boson model. We consider the boson model at the harmonic approximation and show that, for the correlated Chern insulator, the spin-wave excitation spectrum is gapless while, for the correlated topological insulator, gapped. We briefly comment on the possible effects of the boson-boson (spin-wave--spin-wave) coupling.
106 - Yusuke Kamogawa , Joji Nasu , 2019
We study a ferromagnetic instability in a doped single-band Hubbard model by means of dynamical mean-field theory with the continuous-time quantum Monte Carlo simulations. Examining the effect of the strong correlations in the system on the hypercubi c and Bethe lattice, we find that the ferromagnetically ordered state appears in the former, while it does not in the latter. We also reveal that the ferromagnetic order is more stable in the case that the noninteracting DOS exhibits a slower decay in the high-energy region. The present results suggest that, in the strong-coupling regime, the high-energy part of DOS plays an essential role for the emergence of the ferromagnetically ordered state, in contrast to the Stoner criterion justified in the weak interaction limit.
We have performed numerical studies of the Hubbard-Holstein model in two dimensions using determinant quantum Monte Carlo (DQMC). Here we present details of the method, emphasizing the treatment of the lattice degrees of freedom, and then study the f illing and behavior of the fermion sign as a function of model parameters. We find a region of parameter space with large Holstein coupling where the fermion sign recovers despite large values of the Hubbard interaction. This indicates that studies of correlated polarons at finite carrier concentrations are likely accessible to DQMC simulations. We then restrict ourselves to the half-filled model and examine the evolution of the antiferromagnetic structure factor, other metrics for antiferromagnetic and charge-density-wave order, and energetics of the electronic and lattice degrees of freedom as a function of electron-phonon coupling. From this we find further evidence for a competition between charge-density-wave and antiferromagnetic order at half-filling.
Nematicity is a well known property of liquid crystals and has been recently discussed in the context of strongly interacting electrons. An electronic nematic phase has been seen by many experiments in certain strongly correlated materials, in partic ular, in the pseudogap phase generic to many hole-doped cuprate superconductors. Recent measurements in high $T_c$ superconductors has shown even if the lattice is perfectly rotationally symmetric, the ground state can still have strongly nematic local properties. Our study of the two-dimensional Hubbard model provides strong support of the recent experimental results on local rotational $C_4$ symmetry breaking. The variational cluster approach is used here to show the possibility of an electronic nematic state and the proximity of the underlying symmetry-breaking ground state within the Hubbard model. We identify this nematic phase in the overdoped region and show that the local nematicity decreases with increasing electron filling. Our results also indicate that strong Coulomb interaction may drive the nematic phase into a phase similar to the stripe structure. The calculated spin (magnetic) correlation function in momentum space shows the effects resulting from real-space nematicity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا