ﻻ يوجد ملخص باللغة العربية
Learning what to share between tasks has been a topic of great importance recently, as strategic sharing of knowledge has been shown to improve downstream task performance. This is particularly important for multilingual applications, as most languages in the world are under-resourced. Here, we consider the setting of training models on multiple different languages at the same time, when little or no data is available for languages other than English. We show that this challenging setup can be approached using meta-learning, where, in addition to training a source language model, another model learns to select which training instances are the most beneficial to the first. We experiment using standard supervised, zero-shot cross-lingual, as well as few-shot cross-lingual settings for different natural language understanding tasks (natural language inference, question answering). Our extensive experimental setup demonstrates the consistent effectiveness of meta-learning for a total of 15 languages. We improve upon the state-of-the-art for zero-shot and few-shot NLI (on MultiNLI and XNLI) and QA (on the MLQA dataset). A comprehensive error analysis indicates that the correlation of typological features between languages can partly explain when parameter sharing learned via meta-learning is beneficial.
Multilingual pre-trained contextual embedding models (Devlin et al., 2019) have achieved impressive performance on zero-shot cross-lingual transfer tasks. Finding the most effective fine-tuning strategy to fine-tune these models on high-resource lang
Cross-language entity linking grounds mentions in multiple languages to a single-language knowledge base. We propose a neural ranking architecture for this task that uses multilingual BERT representations of the mention and the context in a neural ne
Multilingual pre-trained models have achieved remarkable transfer performance by pre-trained on rich kinds of languages. Most of the models such as mBERT are pre-trained on unlabeled corpora. The static and contextual embeddings from the models could
Intermediate-task training---fine-tuning a pretrained model on an intermediate task before fine-tuning again on the target task---often improves model performance substantially on language understanding tasks in monolingual English settings. We inves
Despite their success, large pre-trained multilingual models have not completely alleviated the need for labeled data, which is cumbersome to collect for all target languages. Zero-shot cross-lingual transfer is emerging as a practical solution: pre-