ترغب بنشر مسار تعليمي؟ اضغط هنا

Literature Survey on Finding Influential Communities in Large Scale Networks

365   0   0.0 ( 0 )
 نشر من قبل Saket Dingliwal
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Community or modular structure is considered to be a significant property of large scale real-world graphs such as social or information networks. Detecting influential clusters or communities in these graphs is a problem of considerable interest as it often accounts for the functionality of the system. We aim to provide a thorough exposition of the topic, including the main elements of the problem, a brief introduction of the existing research for both disjoint and overlapping community search, the idea of influential communities, its implications and the current state of the art and finally provide some insight on possible directions for future research.



قيم البحث

اقرأ أيضاً

Community structure is a typical property of many real-world networks, and has become a key to understand the dynamics of the networked systems. In these networks most nodes apparently lie in a community while there often exists a few nodes straddlin g several communities. An ideal algorithm for community detection is preferable which can identify the overlapping communities in such networks. To represent an overlapping division we develop a encoding schema composed of two segments, the first one represents a disjoint partition and the second one represents a extension of the partition that allows of multiple memberships. We give a measure for the informativeness of a node, and present an evolutionary method for detecting the overlapping communities in a network.
The conventional notion of community that favors a high ratio of internal edges to outbound edges becomes invalid when each vertex participates in multiple communities. Such a behavior is commonplace in social networks. The significant overlaps among communities make most existing community detection algorithms ineffective. The lack of effective and efficient tools resulted in very few empirical studies on large-scale detection and analyses of overlapping community structure in real social networks. We developed recently a scalable and accurate method called the Partial Community Merger Algorithm (PCMA) with linear complexity and demonstrated its effectiveness by analyzing two online social networks, Sina Weibo and Friendster, with 79.4 and 65.6 million vertices, respectively. Here, we report in-depth analyses of the 2.9 million communities detected by PCMA to uncover their complex overlapping structure. Each community usually overlaps with a significant number of other communities and has far more outbound edges than internal edges. Yet, the communities remain well separated from each other. Most vertices in a community are multi-membership vertices, and they can be at the core or the peripheral. Almost half of the entire network can be accounted for by an extremely dense network of communities, with the communities being the vertices and the overlaps being the edges. The empirical findings ask for rethinking the notion of community, especially the boundary of a community. Realizing that it is how the edges are organized that matters, the f-core is suggested as a suitable concept for overlapping community in social networks. The results shed new light on the understanding of overlapping community.
There is recently a surge in approaches that learn low-dimensional embeddings of nodes in networks. As there are many large-scale real-world networks, its inefficient for existing approaches to store amounts of parameters in memory and update them ed ge after edge. With the knowledge that nodes having similar neighborhood will be close to each other in embedding space, we propose COSINE (COmpresSIve NE) algorithm which reduces the memory footprint and accelerates the training process by parameters sharing among similar nodes. COSINE applies graph partitioning algorithms to networks and builds parameter sharing dependency of nodes based on the result of partitioning. With parameters sharing among similar nodes, COSINE injects prior knowledge about higher structural information into training process which makes network embedding more efficient and effective. COSINE can be applied to any embedding lookup method and learn high-quality embeddings with limited memory and shorter training time. We conduct experiments of multi-label classification and link prediction, where baselines and our model have the same memory usage. Experimental results show that COSINE gives baselines up to 23% increase on classification and up to 25% increase on link prediction. Moreover, time of all representation learning methods using COSINE decreases from 30% to 70%.
Identifying influential nodes that can jointly trigger the maximum influence spread in networks is a fundamental problem in many applications such as viral marketing, online advertising, and disease control. Most existing studies assume that social i nfluence is static and they fail to capture the dynamics of influence in reality. In this work, we address the dynamic influence challenge by designing efficient streaming methods that can identify influential nodes from highly dynamic node interaction streams. We first propose a general time-decaying dynamic interaction network (TDN) model to model node interaction streams with the ability to smoothly discard outdated data. Based on the TDN model, we design three algorithms, i.e., SieveADN, BasicReduction, and HistApprox. SieveADN identifies influential nodes from a special kind of TDNs with efficiency. BasicReduction uses SieveADN as a basic building block to identify influential nodes from general TDNs. HistApprox significantly improves the efficiency of BasicReduction. More importantly, we theoretically show that all three algorithms enjoy constant factor approximation guarantees. Experiments conducted on various real interaction datasets demonstrate that our approach finds near-optimal solutions with speed at least $5$ to $15$ times faster than baseline methods.
We here study the behavior of political party members aiming at identifying how ideological communities are created and evolve over time in diverse (fragmented and non-fragmented) party systems. Using public voting data of both Brazil and the US, we propose a methodology to identify and characterize ideological communities, their member polarization, and how such communities evolve over time, covering a 15-year period. Our results reveal very distinct patterns across the two case studies, in terms of both structural and dynamic properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا