ترغب بنشر مسار تعليمي؟ اضغط هنا

COSINE: Compressive Network Embedding on Large-scale Information Networks

132   0   0.0 ( 0 )
 نشر من قبل Zhengyan Zhang
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

There is recently a surge in approaches that learn low-dimensional embeddings of nodes in networks. As there are many large-scale real-world networks, its inefficient for existing approaches to store amounts of parameters in memory and update them edge after edge. With the knowledge that nodes having similar neighborhood will be close to each other in embedding space, we propose COSINE (COmpresSIve NE) algorithm which reduces the memory footprint and accelerates the training process by parameters sharing among similar nodes. COSINE applies graph partitioning algorithms to networks and builds parameter sharing dependency of nodes based on the result of partitioning. With parameters sharing among similar nodes, COSINE injects prior knowledge about higher structural information into training process which makes network embedding more efficient and effective. COSINE can be applied to any embedding lookup method and learn high-quality embeddings with limited memory and shorter training time. We conduct experiments of multi-label classification and link prediction, where baselines and our model have the same memory usage. Experimental results show that COSINE gives baselines up to 23% increase on classification and up to 25% increase on link prediction. Moreover, time of all representation learning methods using COSINE decreases from 30% to 70%.

قيم البحث

اقرأ أيضاً

132 - Jingbo Shang , Meng Qu , Jialu Liu 2016
Most real-world data can be modeled as heterogeneous information networks (HINs) consisting of vertices of multiple types and their relationships. Search for similar vertices of the same type in large HINs, such as bibliographic networks and business -review networks, is a fundamental problem with broad applications. Although similarity search in HINs has been studied previously, most existing approaches neither explore rich semantic information embedded in the network structures nor take users preference as a guidance. In this paper, we re-examine similarity search in HINs and propose a novel embedding-based framework. It models vertices as low-dimensional vectors to explore network structure-embedded similarity. To accommodate user preferences at defining similarity semantics, our proposed framework, ESim, accepts user-defined meta-paths as guidance to learn vertex vectors in a user-preferred embedding space. Moreover, an efficient and parallel sampling-based optimization algorithm has been developed to learn embeddings in large-scale HINs. Extensive experiments on real-world large-scale HINs demonstrate a significant improvement on the effectiveness of ESim over several state-of-the-art algorithms as well as its scalability.
101 - Yuanfu Lu , Chuan Shi , Linmei Hu 2019
Heterogeneous information network (HIN) embedding aims to embed multiple types of nodes into a low-dimensional space. Although most existing HIN embedding methods consider heterogeneous relations in HINs, they usually employ one single model for all relations without distinction, which inevitably restricts the capability of network embedding. In this paper, we take the structural characteristics of heterogeneous relations into consideration and propose a novel Relation structure-aware Heterogeneous Information Network Embedding model (RHINE). By exploring the real-world networks with thorough mathematical analysis, we present two structure-related measures which can consistently distinguish heterogeneous relations into two categories: Affiliation Relations (ARs) and Interaction Relations (IRs). To respect the distinctive characteristics of relations, in our RHINE, we propose different models specifically tailored to handle ARs and IRs, which can better capture the structures and semantics of the networks. At last, we combine and optimize these models in a unified and elegant manner. Extensive experiments on three real-world datasets demonstrate that our model significantly outperforms the state-of-the-art methods in various tasks, including node clustering, link prediction, and node classification.
193 - Chengbin Hou , Shan He , Ke Tang 2018
Attributed networks are ubiquitous since a network often comes with auxiliary attribute information e.g. a social network with user profiles. Attributed Network Embedding (ANE) has recently attracted considerable attention, which aims to learn unifie d low dimensional node embeddings while preserving both structural and attribute information. The resulting node embeddings can then facilitate various network downstream tasks e.g. link prediction. Although there are several ANE methods, most of them cannot deal with incomplete attributed networks with missing links and/or missing node attributes, which often occur in real-world scenarios. To address this issue, we propose a robust ANE method, the general idea of which is to reconstruct a unified denser network by fusing two sources of information for information enhancement, and then employ a random walks based network embedding method for learning node embeddings. The experiments of link prediction, node classification, visualization, and parameter sensitivity analysis on six real-world datasets validate the effectiveness of our method to incomplete attributed networks.
109 - Yu Shi , Huan Gui , Qi Zhu 2018
Heterogeneous information networks (HINs) are ubiquitous in real-world applications. Due to the heterogeneity in HINs, the typed edges may not fully align with each other. In order to capture the semantic subtlety, we propose the concept of aspects w ith each aspect being a unit representing one underlying semantic facet. Meanwhile, network embedding has emerged as a powerful method for learning network representation, where the learned embedding can be used as features in various downstream applications. Therefore, we are motivated to propose a novel embedding learning framework---AspEm---to preserve the semantic information in HINs based on multiple aspects. Instead of preserving information of the network in one semantic space, AspEm encapsulates information regarding each aspect individually. In order to select aspects for embedding purpose, we further devise a solution for AspEm based on dataset-wide statistics. To corroborate the efficacy of AspEm, we conducted experiments on two real-words datasets with two types of applications---classification and link prediction. Experiment results demonstrate that AspEm can outperform baseline network embedding learning methods by considering multiple aspects, where the aspects can be selected from the given HIN in an unsupervised manner.
Meta-graph is currently the most powerful tool for similarity search on heterogeneous information networks,where a meta-graph is a composition of meta-paths that captures the complex structural information. However, current relevance computing based on meta-graph only considers the complex structural information, but ignores its embedded meta-paths information. To address this problem, we proposeMEta-GrAph-based network embedding models, called MEGA and MEGA++, respectively. The MEGA model uses normalized relevance or similarity measures that are derived from a meta-graph and its embedded meta-paths between nodes simultaneously, and then leverages tensor decomposition method to perform node embedding. The MEGA++ further facilitates the use of coupled tensor-matrix decomposition method to obtain a joint embedding for nodes, which simultaneously considers the hidden relations of all meta information of a meta-graph.Extensive experiments on two real datasets demonstrate thatMEGA and MEGA++ are more effective than state-of-the-art approaches.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا