ترغب بنشر مسار تعليمي؟ اضغط هنا

Tracking Influential Nodes in Time-Decaying Dynamic Interaction Networks

145   0   0.0 ( 0 )
 نشر من قبل Junzhou Zhao
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Identifying influential nodes that can jointly trigger the maximum influence spread in networks is a fundamental problem in many applications such as viral marketing, online advertising, and disease control. Most existing studies assume that social influence is static and they fail to capture the dynamics of influence in reality. In this work, we address the dynamic influence challenge by designing efficient streaming methods that can identify influential nodes from highly dynamic node interaction streams. We first propose a general time-decaying dynamic interaction network (TDN) model to model node interaction streams with the ability to smoothly discard outdated data. Based on the TDN model, we design three algorithms, i.e., SieveADN, BasicReduction, and HistApprox. SieveADN identifies influential nodes from a special kind of TDNs with efficiency. BasicReduction uses SieveADN as a basic building block to identify influential nodes from general TDNs. HistApprox significantly improves the efficiency of BasicReduction. More importantly, we theoretically show that all three algorithms enjoy constant factor approximation guarantees. Experiments conducted on various real interaction datasets demonstrate that our approach finds near-optimal solutions with speed at least $5$ to $15$ times faster than baseline methods.

قيم البحث

اقرأ أيضاً

Identifying emerging influential or popular node/item in future on network is a current interest of the researchers. Most of previous works focus on identifying leaders in time evolving networks on the basis of network structure or nodes activity sep arate way. In this paper, we have proposed a hybrid model which considers both, nodes structural centrality and recent activity of nodes together. We consider that the node is active when it is receiving more links in a given recent time window, rather than in the whole past life of the node. Furthermore our model is flexible to implement structural rank such as PageRank and webpage click information as activity of the node. For testing the performance of our model, we adopt the PageRank algorithm and linear preferential attachment based model as the baseline methods. Experiments on three real data sets (i.e Movielens, Netflix and Facebook wall post data set), we found that our model shows better performance in terms of finding the emerging influential nodes that were not popular in past.
There is an ever-increasing interest in investigating dynamics in time-varying graphs (TVGs). Nevertheless, so far, the notion of centrality in TVG scenarios usually refers to metrics that assess the relative importance of nodes along the temporal ev olution of the dynamic complex network. For some TVG scenarios, however, more important than identifying the central nodes under a given node centrality definition is identifying the key time instants for taking certain actions. In this paper, we thus introduce and investigate the notion of time centrality in TVGs. Analogously to node centrality, time centrality evaluates the relative importance of time instants in dynamic complex networks. In this context, we present two time centrality metrics related to diffusion processes. We evaluate the two defined metrics using both a real-world dataset representing an in-person contact dynamic network and a synthetically generated randomized TVG. We validate the concept of time centrality showing that diffusion starting at the best classified time instants (i.e. the most central ones), according to our metrics, can perform a faster and more efficient diffusion process.
Characterizing temporal evolution of stock markets is a fundamental and challenging problem. The literature on analyzing the dynamics of the markets has focused so far on macro measures with less predictive power. This paper addresses this issue from a micro point of view. Given an investigating period, a series of stock networks are constructed first by the moving-window method and the significance test of stock correlations. Then, several conserved networks are generated to extract different backbones of the market under different states. Finally, influential stocks and corresponding sectors are identified from each conserved network, based on which the longitudinal analysis is performed to describe the evolution of the market. The application of the above procedure to stocks belonging to Standard & Pools 500 Index from January 2006 to April 2010 recovers the 2008 financial crisis from the evolutionary perspective.
Competition networks are formed via adversarial interactions between actors. The Dynamic Competition Hypothesis predicts that influential actors in competition networks should have a large number of common out-neighbors with many other nodes. We empi rically study this idea as a centrality score and find the measure predictive of importance in several real-world networks including food webs, conflict networks, and voting data from Survivor.
97 - En-Yu Yu , Yan Fu , Jun-Lin Zhou 2021
Many real-world systems can be expressed in temporal networks with nodes playing far different roles in structure and function and edges representing the relationships between nodes. Identifying critical nodes can help us control the spread of public opinions or epidemics, predict leading figures in academia, conduct advertisements for various commodities, and so on. However, it is rather difficult to identify critical nodes because the network structure changes over time in temporal networks. In this paper, considering the sequence topological information of temporal networks, a novel and effective learning framework based on the combination of special GCNs and RNNs is proposed to identify nodes with the best spreading ability. The effectiveness of the approach is evaluated by weighted Susceptible-Infected-Recovered model. Experimental results on four real-world temporal networks demonstrate that the proposed method outperforms both traditional and deep learning benchmark methods in terms of the Kendall $tau$ coefficient and top $k$ hit rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا