ترغب بنشر مسار تعليمي؟ اضغط هنا

Uncovering Complex Overlapping Pattern of Communities in Large-scale Social Networks

83   0   0.0 ( 0 )
 نشر من قبل Elvis Xu
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

The conventional notion of community that favors a high ratio of internal edges to outbound edges becomes invalid when each vertex participates in multiple communities. Such a behavior is commonplace in social networks. The significant overlaps among communities make most existing community detection algorithms ineffective. The lack of effective and efficient tools resulted in very few empirical studies on large-scale detection and analyses of overlapping community structure in real social networks. We developed recently a scalable and accurate method called the Partial Community Merger Algorithm (PCMA) with linear complexity and demonstrated its effectiveness by analyzing two online social networks, Sina Weibo and Friendster, with 79.4 and 65.6 million vertices, respectively. Here, we report in-depth analyses of the 2.9 million communities detected by PCMA to uncover their complex overlapping structure. Each community usually overlaps with a significant number of other communities and has far more outbound edges than internal edges. Yet, the communities remain well separated from each other. Most vertices in a community are multi-membership vertices, and they can be at the core or the peripheral. Almost half of the entire network can be accounted for by an extremely dense network of communities, with the communities being the vertices and the overlaps being the edges. The empirical findings ask for rethinking the notion of community, especially the boundary of a community. Realizing that it is how the edges are organized that matters, the f-core is suggested as a suitable concept for overlapping community in social networks. The results shed new light on the understanding of overlapping community.



قيم البحث

اقرأ أيضاً

200 - Ajay Sridharan 2010
Degree distribution of nodes, especially a power law degree distribution, has been regarded as one of the most significant structural characteristics of social and information networks. Node degree, however, only discloses the first-order structure o f a network. Higher-order structures such as the edge embeddedness and the size of communities may play more important roles in many online social networks. In this paper, we provide empirical evidence on the existence of rich higherorder structural characteristics in online social networks, develop mathematical models to interpret and model these characteristics, and discuss their various applications in practice. In particular, 1) We show that the embeddedness distribution of social links in many social networks has interesting and rich behavior that cannot be captured by well-known network models. We also provide empirical results showing a clear correlation between the embeddedness distribution and the average number of messages communicated between pairs of social network nodes. 2) We formally prove that random k-tree, a recent model for complex networks, has a power law embeddedness distribution, and show empirically that the random k-tree model can be used to capture the rich behavior of higherorder structures we observed in real-world social networks. 3) Going beyond the embeddedness, we show that a variant of the random k-tree model can be used to capture the power law distribution of the size of communities of overlapping cliques discovered recently.
Community structure is a typical property of many real-world networks, and has become a key to understand the dynamics of the networked systems. In these networks most nodes apparently lie in a community while there often exists a few nodes straddlin g several communities. An ideal algorithm for community detection is preferable which can identify the overlapping communities in such networks. To represent an overlapping division we develop a encoding schema composed of two segments, the first one represents a disjoint partition and the second one represents a extension of the partition that allows of multiple memberships. We give a measure for the informativeness of a node, and present an evolutionary method for detecting the overlapping communities in a network.
This paper describes the deployment of a large-scale study designed to measure human interactions across a variety of communication channels, with high temporal resolution and spanning multiple years - the Copenhagen Networks Study. Specifically, we collect data on face-to-face interactions, telecommunication, social networks, location, and background information (personality, demographic, health, politics) for a densely connected population of 1,000 individuals, using state-of-art smartphones as social sensors. Here we provide an overview of the related work and describe the motivation and research agenda driving the study. Additionally the paper details the data-types measured, and the technical infrastructure in terms of both backend and phone software, as well as an outline of the deployment procedures. We document the participant privacy procedures and their underlying principles. The paper is concluded with early results from data analysis, illustrating the importance of multi-channel high-resolution approach to data collection.
Identification of communities in complex networks has become an effective means to analysis of complex systems. It has broad applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and fin ding communities of links are two popular schemes for network structure analysis. These schemes, however, have inherent drawbacks and are often inadequate to properly capture complex organizational structures in real networks. We introduce a new scheme and effective approach for identifying complex network structures using a mixture of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large semantic association network of commonly used words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.
Population behaviours, such as voting and vaccination, depend on social networks. Social networks can differ depending on behaviour type and are typically hidden. However, we do often have large-scale behavioural data, albeit only snapshots taken at one timepoint. We present a method that jointly infers large-scale network structure and a networked model of human behaviour using only snapshot population behavioural data. This exploits the simplicity of a few parameter, geometric socio-demographic network model and a spin based model of behaviour. We illustrate, for the EU Referendum and two London Mayoral elections, how the model offers both prediction and the interpretation of our homophilic inclinations. Beyond offering the extraction of behaviour specific network structure from large-scale behavioural datasets, our approach yields a crude calculus linking inequalities and social preferences to behavioural outcomes. We give examples of potential network sensitive policies: how changes to income inequality, a social temperature and homophilic preferences might have reduced polarisation in a recent election.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا