ترغب بنشر مسار تعليمي؟ اضغط هنا

Carnot rectifiability of sub-Riemannian manifolds with constant tangent

118   0   0.0 ( 0 )
 نشر من قبل Enrico Le Donne
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that if $M$ is a sub-Riemannian manifold and $N$ is a Carnot group such that the nilpotentization of $M$ at almost every point is isomorphic to $N$, then there are subsets of $N$ of positive measure that embed into $M$ by bilipschitz maps. Furthermore, $M$ is countably $N$--rectifiable, i.e., all of $M$ except for a null set can be covered by countably many such maps.



قيم البحث

اقرأ أيضاً

We prove that sub-Riemannian manifolds are infinitesimally Hilbertian (i.e., the associated Sobolev space is Hilbert) when equipped with an arbitrary Radon measure. The result follows from an embedding of metric derivations into the space of square-i ntegrable sections of the horizontal bundle, which we obtain on all weighted sub-Finsler manifolds. As an intermediate tool, of independent interest, we show that any sub-Finsler distance can be monotonically approximated from below by Finsler ones. All the results are obtained in the general setting of possibly rank-varying structures.
We provide a Rademacher theorem for intrinsically Lipschitz functions $phi:Usubseteq mathbb Wto mathbb L$, where $U$ is a Borel set, $mathbb W$ and $mathbb L$ are complementary subgroups of a Carnot group, where we require that $mathbb L$ is a normal subgroup. Our hypotheses are satisfied for example when $mathbb W$ is a horizontal subgroup. Moreover, we provide an area formula for this class of intrinsically Lipschitz functions.
The purpose of this note is to record a consequence, for general metric spaces, of a recent result of David Bate. We prove the following fact: Let $X$ be a compact metric space of topological dimension $n$. Suppose that the $n$-dimensional Hausdorff measure of $X$, $mathcal H^n(X)$, is finite. Suppose further that the lower n-density of the measure $mathcal H^n$ is positive, $mathcal H^n$-almost everywhere in $X$. Then $X$ contains an $n$-rectifiable subset of positive $mathcal H^n$-measure. Moreover, the assumption on the lower density is unnecessary if one uses recently announced results of Csornyei-Jones.
We formalize the notion of limit of an inverse system of metric spaces with $1$-Lipschitz projections having unbounded fibers. The purpose is to use sub-Riemannian groups for metrizing the space of signatures of rectifiable paths in Euclidean spaces, as introduced by Chen. The constructive limit space has the universal property in the category of pointed metric spaces with 1-Lipschitz maps. In the general setting some metric properties are discussed such as the existence of geodesics and lifts. The notion of submetry will play a crucial role. The construction is applied to the sequence of free Carnot groups of fixed rank $n$ and increasing step. In this case, such limit space is in correspondence with the space of signatures of rectifiable paths in $mathbb R^n$. Hambly-Lyonss result on the uniqueness of signature implies that this space is a geodesic metric tree that brunches at every point with infinite valence. As a particular consequence we deduce that every path in $mathbb R^n$ can be approximated by projections of some geodesics in some Carnot group of rank $n$, giving an evidence that the complexity of sub-Riemannian geodesics increases with the step.
We consider sets of locally finite perimeter in Carnot groups. We show that if E is a set of locally finite perimeter in a Carnot group G, then for almost every x in G with respect to the perimeter measure of E, some tangent of E at x is a vertical h alfspace. This is a partial extension of a theorem of Franchi-Serapioni-Serra Cassano in step 2 Carnot groups: they have shown that, for almost every x, E has a unique tangent at x, and this tangent is a vertical halfspace.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا