ترغب بنشر مسار تعليمي؟ اضغط هنا

A note on topological dimension, Hausdorff measure, and rectifiability

109   0   0.0 ( 0 )
 نشر من قبل Enrico Le Donne
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The purpose of this note is to record a consequence, for general metric spaces, of a recent result of David Bate. We prove the following fact: Let $X$ be a compact metric space of topological dimension $n$. Suppose that the $n$-dimensional Hausdorff measure of $X$, $mathcal H^n(X)$, is finite. Suppose further that the lower n-density of the measure $mathcal H^n$ is positive, $mathcal H^n$-almost everywhere in $X$. Then $X$ contains an $n$-rectifiable subset of positive $mathcal H^n$-measure. Moreover, the assumption on the lower density is unnecessary if one uses recently announced results of Csornyei-Jones.

قيم البحث

اقرأ أيضاً

We show that if $M$ is a sub-Riemannian manifold and $N$ is a Carnot group such that the nilpotentization of $M$ at almost every point is isomorphic to $N$, then there are subsets of $N$ of positive measure that embed into $M$ by bilipschitz maps. Fu rthermore, $M$ is countably $N$--rectifiable, i.e., all of $M$ except for a null set can be covered by countably many such maps.
We obtain the exact value of the Hausdorff dimension of the set of coefficients of Gauss sums which for a given $alpha in (1/2,1)$ achieve the order at least $N^{alpha}$ for infinitely many sum lengths $N$. For Weyl sums with polynomials of degree $d ge 3$ we obtain a new upper bound on the Hausdorff dimension of the set of polynomial coefficients corresponding to large values of Weyl sums. Our methods also work for monomial sums, match the previously known lower bounds, just giving exact value for the corresponding Hausdorff dimension when $alpha$ is close to $1$. We also obtain a nearly tight bound in a similar question with arbitrary integer sequences of polynomial growth.
147 - Koji Fujiwara , Kevin Whyte 2006
Let $X$ be a geodesic metric space with $H_1(X)$ uniformly generated. If $X$ has asymptotic dimension one then $X$ is quasi-isometric to an unbounded tree. As a corollary, we show that the asymptotic dimension of the curve graph of a compact, oriente d surface with genus $g ge 2$ and one boundary component is at least two.
127 - Benoit Kloeckner 2011
A Wasserstein spaces is a metric space of sufficiently concentrated probability measures over a general metric space. The main goal of this paper is to estimate the largeness of Wasserstein spaces, in a sense to be precised. In a first part, we gener alize the Hausdorff dimension by defining a family of bi-Lipschitz invariants, called critical parameters, that measure largeness for infinite-dimensional metric spaces. Basic properties of these invariants are given, and they are estimated for a naturel set of spaces generalizing the usual Hilbert cube. In a second part, we estimate the value of these new invariants in the case of some Wasserstein spaces, as well as the dynamical complexity of push-forward maps. The lower bounds rely on several embedding results; for example we provide bi-Lipschitz embeddings of all powers of any space inside its Wasserstein space, with uniform bound and we prove that the Wasserstein space of a d-manifold has power-exponential critical parameter equal to d.
For every n, we construct a metric measure space that is doubling, satisfies a Poincare inequality in the sense of Heinonen-Koskela, has topological dimension n, and has a measurable tangent bundle of dimension 1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا