ﻻ يوجد ملخص باللغة العربية
An effective way to reduce clutter in a graph drawing that has (many) crossings is to group edges that travel in parallel into emph{bundles}. Each edge can participate in many such bundles. Any crossing in this bundled graph occurs between two bundles, i.e., as a emph{bundled crossing}. We consider the problem of bundled crossing minimization: A graph is given and the goal is to find a bundled drawing with at most $k$ bundled crossings. We show that the problem is NP-hard when we require a simple drawing. Our main result is an FPT algorithm (in $k$) when we require a simple circular layout. These results make use of the connection between bundled crossings and graph genus.
Storyline visualizations help visualize encounters of the characters in a story over time. Each character is represented by an x-monotone curve that goes from left to right. A meeting is represented by having the characters that participate in the me
Storyline visualizations show the structure of a story, by depicting the interactions of the characters over time. Each character is represented by an x-monotone curve from left to right, and a meeting is represented by having the curves of the parti
A path or a polygonal domain is C-oriented if the orientations of its edges belong to a set of C given orientations; this is a generalization of the notable rectilinear case (C = 2). We study exact and approximation algorithms for minimum-link C-orie
A measure for the visual complexity of a straight-line crossing-free drawing of a graph is the minimum number of lines needed to cover all vertices. For a given graph $G$, the minimum such number (over all drawings in dimension $d in {2,3}$) is calle
Given a set of pairwise disjoint polygonal obstacles in the plane, finding an obstacle-avoiding Euclidean shortest path between two points is a classical problem in computational geometry and has been studied extensively. The previous best algorithm