ﻻ يوجد ملخص باللغة العربية
Storyline visualizations show the structure of a story, by depicting the interactions of the characters over time. Each character is represented by an x-monotone curve from left to right, and a meeting is represented by having the curves of the participating characters run close together for some time. There have been various approaches to drawing storyline visualizations in an automated way. In order to keep the visual complexity low, rather than minimizing pairwise crossings of curves, we count block crossings, that is, pairs of intersecting bundles of lines. Partly inspired by the ILP-based approach of Gronemann et al. [GD 2016] for minimizing the number of pairwise crossings, we model the problem as a satisfiability problem (since the straightforward ILP formulation becomes more complicated and harder to solve). Having restricted ourselves to a decision problem, we can apply powerful SAT solvers to find optimal drawings in reasonable time. We compare this SAT-based approach with two exact algorithms for block crossing minimization, using both the benchmark instances of Gronemann et al. and random instances. We show that the SAT approach is suitable for real-world instances and identify cases where the other algorithms are preferable.
Storyline visualizations help visualize encounters of the characters in a story over time. Each character is represented by an x-monotone curve that goes from left to right. A meeting is represented by having the characters that participate in the me
An effective way to reduce clutter in a graph drawing that has (many) crossings is to group edges that travel in parallel into emph{bundles}. Each edge can participate in many such bundles. Any crossing in this bundled graph occurs between two bundle
We provide a comprehensive study of a natural geometric optimization problem motivated by questions in the context of satellite communication and astrophysics. In the problem Minimum Scan Cover with Angular Costs (MSC), we are given a graph $G$ that
We consider the construction of a polygon $P$ with $n$ vertices whose turning angles at the vertices are given by a sequence $A=(alpha_0,ldots, alpha_{n-1})$, $alpha_iin (-pi,pi)$, for $iin{0,ldots, n-1}$. The problem of realizing $A$ by a polygon ca
Motivated by indoor localization by tripwire lasers, we study the problem of cutting a polygon into small-size pieces, using the chords of the polygon. Sever