ﻻ يوجد ملخص باللغة العربية
Given a set of pairwise disjoint polygonal obstacles in the plane, finding an obstacle-avoiding Euclidean shortest path between two points is a classical problem in computational geometry and has been studied extensively. The previous best algorithm was given by Hershberger and Suri [FOCS 1993, SIAM J. Comput. 1999] and the algorithm runs in $O(nlog n)$ time and $O(nlog n)$ space, where $n$ is the total number of vertices of all obstacles. The algorithm is time-optimal because $Omega(nlog n)$ is a lower bound. It has been an open problem for over two decades whether the space can be reduced to $O(n)$. In this paper, we settle it by solving the problem in $O(nlog n)$ time and $O(n)$ space, which is optimal in both time and space; we achieve this by modifying the algorithm of Hershberger and Suri. Like their original algorithm, our new algorithm can build a shortest path map for a source point $s$ in $O(nlog n)$ time and $O(n)$ space, such that given any query point $t$, the length of a shortest path from $s$ to $t$ can be computed in $O(log n)$ time and a shortest path can be produced in additional time linear in the number of edges of the path.
This paper presents an optimal $Theta(n log n)$ algorithm for determining time-minimal rectilinear paths among $n$ transient rectilinear obstacles. An obstacle is transient if it exists in the scene only for a specific time interval, i.e., it appears
Given a set of pairwise disjoint polygonal obstacles in the plane, finding an obstacle-avoiding Euclidean shortest path between two points is a classical problem in computational geometry and has been studied extensively. Previously, Hershberger and
We design fast deterministic algorithms for distance computation in the congested clique model. Our key contributions include: -- A $(2+epsilon)$-approximation for all-pairs shortest paths in $O(log^2{n} / epsilon)$ rounds on unweighted undirected
A path or a polygonal domain is C-oriented if the orientations of its edges belong to a set of C given orientations; this is a generalization of the notable rectilinear case (C = 2). We study exact and approximation algorithms for minimum-link C-orie
We consider the problem of computing shortest paths in weighted unit-disk graphs in constant dimension $d$. Although the single-source and all-pairs variants of this problem are well-studied in the plane case, no non-trivial exact distance oracles fo