ﻻ يوجد ملخص باللغة العربية
We present the optimal design of a spectral method widely used to initialize nonconvex optimization algorithms for solving phase retrieval and other signal recovery problems. Our work leverages recent results that provide an exact characterization of the performance of the spectral method in the high-dimensional limit. This characterization allows us to map the task of optimal design to a constrained optimization problem in a weighted $L^2$ function space. The latter has a closed-form solution. Interestingly, under a mild technical condition, our results show that there exists a fixed design that is uniformly optimal over all sampling ratios. Numerical simulations demonstrate the performance improvement brought by the proposed optimal design over existing constructions in the literature. In a recent work, Mondelli and Montanari have shown the existence of a weak reconstruction threshold below which the spectral method cannot provide useful estimates. Our results serve to complement that work by deriving the fundamental limit of the spectral method beyond the aforementioned threshold.
We demonstrate that a sparse signal can be estimated from the phase of complex random measurements, in a phase-only compressive sensing (PO-CS) scenario. With high probability and up to a global unknown amplitude, we can perfectly recover such a sign
We consider the phase retrieval problem, in which the observer wishes to recover a $n$-dimensional real or complex signal $mathbf{X}^star$ from the (possibly noisy) observation of $|mathbf{Phi} mathbf{X}^star|$, in which $mathbf{Phi}$ is a matrix of
In phase retrieval we want to recover an unknown signal $boldsymbol xinmathbb C^d$ from $n$ quadratic measurements of the form $y_i = |langle{boldsymbol a}_i,{boldsymbol x}rangle|^2+w_i$ where $boldsymbol a_iin mathbb C^d$ are known sensing vectors a
Compressive sensing has shown significant promise in biomedical fields. It reconstructs a signal from sub-Nyquist random linear measurements. Classical methods only exploit the sparsity in one domain. A lot of biomedical signals have additional struc
In this paper, we propose a generalized expectation consistent signal recovery algorithm to estimate the signal $mathbf{x}$ from the nonlinear measurements of a linear transform output $mathbf{z}=mathbf{A}mathbf{x}$. This estimation problem has been