ترغب بنشر مسار تعليمي؟ اضغط هنا

Keep the phase! Signal recovery in phase-only compressive sensing

83   0   0.0 ( 0 )
 نشر من قبل Laurent Jacques
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate that a sparse signal can be estimated from the phase of complex random measurements, in a phase-only compressive sensing (PO-CS) scenario. With high probability and up to a global unknown amplitude, we can perfectly recover such a signal if the sensing matrix is a complex Gaussian random matrix and the number of measurements is large compared to the signal sparsity. Our approach consists in recasting the (non-linear) PO-CS scheme as a linear compressive sensing model. We built it from a signal normalization constraint and a phase-consistency constraint. Practically, we achieve stable and robust signal direction estimation from the basis pursuit denoising program. Numerically, robust signal direction estimation is reached at about twice the number of measurements needed for signal recovery in compressive sensing.



قيم البحث

اقرأ أيضاً

Compressive sensing has shown significant promise in biomedical fields. It reconstructs a signal from sub-Nyquist random linear measurements. Classical methods only exploit the sparsity in one domain. A lot of biomedical signals have additional struc tures, such as multi-sparsity in different domains, piecewise smoothness, low rank, etc. We propose a framework to exploit all the available structure information. A new convex programming problem is generated with multiple convex structure-inducing constraints and the linear measurement fitting constraint. With additional a priori information for solving the underdetermined system, the signal recovery performance can be improved. In numerical experiments, we compare the proposed method with classical methods. Both simulated data and real-life biomedical data are used. Results show that the newly proposed method achieves better reconstruction accuracy performance in term of both L1 and L2 errors.
We consider the question of estimating a real low-complexity signal (such as a sparse vector or a low-rank matrix) from the phase of complex random measurements. We show that in this phase-only compressive sensing (PO-CS) scenario, we can perfectly r ecover such a signal with high probability and up to global unknown amplitude if the sensing matrix is a complex Gaussian random matrix and if the number of measurements is large compared to the complexity level of the signal space. Our approach proceeds by recasting the (non-linear) PO-CS scheme as a linear compressive sensing model built from a signal normalization constraint, and a phase-consistency constraint imposing any signal estimate to match the observed phases in the measurement domain. Practically, stable and robust signal direction estimation is achieved from any instance optimal algorithm of the compressive sensing literature (such as basis pursuit denoising). This is ensured by proving that the matrix associated with this equivalent linear model satisfies with high probability the restricted isometry property under the above condition on the number of measurements. We finally observe experimentally that robust signal direction recovery is reached at about twice the number of measurements needed for signal recovery in compressive sensing.
We present the optimal design of a spectral method widely used to initialize nonconvex optimization algorithms for solving phase retrieval and other signal recovery problems. Our work leverages recent results that provide an exact characterization of the performance of the spectral method in the high-dimensional limit. This characterization allows us to map the task of optimal design to a constrained optimization problem in a weighted $L^2$ function space. The latter has a closed-form solution. Interestingly, under a mild technical condition, our results show that there exists a fixed design that is uniformly optimal over all sampling ratios. Numerical simulations demonstrate the performance improvement brought by the proposed optimal design over existing constructions in the literature. In a recent work, Mondelli and Montanari have shown the existence of a weak reconstruction threshold below which the spectral method cannot provide useful estimates. Our results serve to complement that work by deriving the fundamental limit of the spectral method beyond the aforementioned threshold.
Approximate message passing (AMP) is an efficient iterative signal recovery algorithm for compressed sensing (CS). For sensing matrices with independent and identically distributed (i.i.d.) Gaussian entries, the behavior of AMP can be asymptotically described by a scaler recursion called state evolution. Orthogonal AMP (OAMP) is a variant of AMP that imposes a divergence-free constraint on the denoiser. In this paper, we extend OAMP to incorporate generic denoisers, hence the name D-OAMP. Our numerical results show that state evolution predicts the performance of D-OAMP well for generic denoisers when i.i.d. Gaussian or partial orthogonal sensing matrices are involved. We compare the performances of denosing-AMP (D-AMP) and D-OAMP for recovering natural images from CS measurements. Simulation results show that D-OAMP outperforms D-AMP in both convergence speed and recovery accuracy for partial orthogonal sensing matrices.
Distributed Compressive Sensing (DCS) improves the signal recovery performance of multi signal ensembles by exploiting both intra- and inter-signal correlation and sparsity structure. However, the existing DCS was proposed for a very limited ensemble of signals that has single common information cite{Baron:2009vd}. In this paper, we propose a generalized DCS (GDCS) which can improve sparse signal detection performance given arbitrary types of common information which are classified into not just full common information but also a variety of partial common information. The theoretical bound on the required number of measurements using the GDCS is obtained. Unfortunately, the GDCS may require much a priori-knowledge on various inter common information of ensemble of signals to enhance the performance over the existing DCS. To deal with this problem, we propose a novel algorithm that can search for the correlation structure among the signals, with which the proposed GDCS improves detection performance even without a priori-knowledge on correlation structure for the case of arbitrarily correlated multi signal ensembles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا