ترغب بنشر مسار تعليمي؟ اضغط هنا

Construction of optimal spectral methods in phase retrieval

71   0   0.0 ( 0 )
 نشر من قبل Antoine Maillard
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the phase retrieval problem, in which the observer wishes to recover a $n$-dimensional real or complex signal $mathbf{X}^star$ from the (possibly noisy) observation of $|mathbf{Phi} mathbf{X}^star|$, in which $mathbf{Phi}$ is a matrix of size $m times n$. We consider a emph{high-dimensional} setting where $n,m to infty$ with $m/n = mathcal{O}(1)$, and a large class of (possibly correlated) random matrices $mathbf{Phi}$ and observation channels. Spectral methods are a powerful tool to obtain approximate observations of the signal $mathbf{X}^star$ which can be then used as initialization for a subsequent algorithm, at a low computational cost. In this paper, we extend and unify previous results and approaches on spectral methods for the phase retrieval problem. More precisely, we combine the linearization of message-passing algorithms and the analysis of the emph{Bethe Hessian}, a classical tool of statistical physics. Using this toolbox, we show how to derive optimal spectral methods for arbitrary channel noise and right-unitarily invariant matrix $mathbf{Phi}$, in an automated manner (i.e. with no optimization over any hyperparameter or preprocessing function).



قيم البحث

اقرأ أيضاً

We present the optimal design of a spectral method widely used to initialize nonconvex optimization algorithms for solving phase retrieval and other signal recovery problems. Our work leverages recent results that provide an exact characterization of the performance of the spectral method in the high-dimensional limit. This characterization allows us to map the task of optimal design to a constrained optimization problem in a weighted $L^2$ function space. The latter has a closed-form solution. Interestingly, under a mild technical condition, our results show that there exists a fixed design that is uniformly optimal over all sampling ratios. Numerical simulations demonstrate the performance improvement brought by the proposed optimal design over existing constructions in the literature. In a recent work, Mondelli and Montanari have shown the existence of a weak reconstruction threshold below which the spectral method cannot provide useful estimates. Our results serve to complement that work by deriving the fundamental limit of the spectral method beyond the aforementioned threshold.
70 - Chaoping Xing , Chen Yuan 2018
Recently, it was discovered by several authors that a $q$-ary optimal locally recoverable code, i.e., a locally recoverable code archiving the Singleton-type bound, can have length much bigger than $q+1$. This is quite different from the classical $q $-ary MDS codes where it is conjectured that the code length is upper bounded by $q+1$ (or $q+2$ for some special case). This discovery inspired some recent studies on length of an optimal locally recoverable code. It was shown in cite{LXY} that a $q$-ary optimal locally recoverable code is unbounded for $d=3,4$. Soon after, it was proved that a $q$-ary optimal locally recoverable code with distance $d$ and locality $r$ can have length $Omega_{d,r}(q^{1 + 1/lfloor(d-3)/2rfloor})$. Recently, an explicit construction of $q$-ary optimal locally recoverable codes for distance $d=5,6$ was given in cite{J18} and cite{BCGLP}. In this paper, we further investigate construction optimal locally recoverable codes along the line of using parity-check matrices. Inspired by classical Reed-Solomon codes and cite{J18}, we equip parity-check matrices with the Vandermond structure. It is turns out that a parity-check matrix with the Vandermond structure produces an optimal locally recoverable code must obey certain disjoint property for subsets of $mathbb{F}_q$. To our surprise, this disjoint condition is equivalent to a well-studied problem in extremal graph theory. With the help of extremal graph theory, we succeed to improve all of the best known results in cite{GXY} for $dgeq 7$. In addition, for $d=6$, we are able to remove the constraint required in cite{J18} that $q$ is even.
We consider the phase retrieval problem of reconstructing a $n$-dimensional real or complex signal $mathbf{X}^{star}$ from $m$ (possibly noisy) observations $Y_mu = | sum_{i=1}^n Phi_{mu i} X^{star}_i/sqrt{n}|$, for a large class of correlated real a nd complex random sensing matrices $mathbf{Phi}$, in a high-dimensional setting where $m,ntoinfty$ while $alpha = m/n=Theta(1)$. First, we derive sharp asymptotics for the lowest possible estimation error achievable statistically and we unveil the existence of sharp phase transitions for the weak- and full-recovery thresholds as a function of the singular values of the matrix $mathbf{Phi}$. This is achieved by providing a rigorous proof of a result first obtained by the replica method from statistical mechanics. In particular, the information-theoretic transition to perfect recovery for full-rank matrices appears at $alpha=1$ (real case) and $alpha=2$ (complex case). Secondly, we analyze the performance of the best-known polynomial time algorithm for this problem -- approximate message-passing -- establishing the existence of a statistical-to-algorithmic gap depending, again, on the spectral properties of $mathbf{Phi}$. Our work provides an extensive classification of the statistical and algorithmic thresholds in high-dimensional phase retrieval for a broad class of random matrices.
84 - Teng Zhang , Feng Yu 2020
This paper investigates the convergence of the randomized Kaczmarz algorithm for the problem of phase retrieval of complex-valued objects. While this algorithm has been studied for the real-valued case}, its generalization to the complex-valued case is nontrivial and has been left as a conjecture. This paper establishes the connection between the convergence of the algorithm and the convexity of an objective function. Based on the connection, it demonstrates that when the sensing vectors are sampled uniformly from a unit sphere and the number of sensing vectors $m$ satisfies $m>O(nlog n)$ as $n, mrightarrowinfty$, then this algorithm with a good initialization achieves linear convergence to the solution with high probability.
This paper is concerned with stable phase retrieval for a family of phase retrieval models we name locally stable and conditionally connected (LSCC) measurement schemes. For every signal $f$, we associate a corresponding weighted graph $G_f$, defined by the LSCC measurement scheme, and show that the phase retrievability of the signal $f$ is determined by the connectivity of $G_f$. We then characterize the phase retrieval stability of the signal $f$ by two measures that are commonly used in graph theory to quantify graph connectivity: the Cheeger constant of $G_f$ for real valued signals, and the algebraic connectivity of $G_f$ for complex valued signals. We use our results to study the stability of two phase retrieval models that can be cast as LSCC measurement schemes, and focus on understanding for which signals the curse of dimensionality can be avoided. The first model we discuss is a finite-dimensional model for locally supported measurements such as the windowed Fourier transform. For signals without large holes, we show the stability constant exhibits only a mild polynomial growth in the dimension, in stark contrast with the exponential growth which uniform stability constants tend to suffer from; more precisely, in $R^d$ the constant grows proportionally to $d^{1/2}$, while in $C^d$ it grows proportionally to $d$. We also show the growth of the constant in the complex case cannot be reduced, suggesting that complex phase retrieval is substantially more difficult than real phase retrieval. The second model we consider is an infinite-dimensional phase retrieval problem in a principal shift invariant space. We show that despite the infinite dimensionality of this model, signals with monotone exponential decay will have a finite stability constant. In contrast, the stability bound provided by our results will be infinite if the signals decay is polynomial.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا