ﻻ يوجد ملخص باللغة العربية
In phase retrieval we want to recover an unknown signal $boldsymbol xinmathbb C^d$ from $n$ quadratic measurements of the form $y_i = |langle{boldsymbol a}_i,{boldsymbol x}rangle|^2+w_i$ where $boldsymbol a_iin mathbb C^d$ are known sensing vectors and $w_i$ is measurement noise. We ask the following weak recovery question: what is the minimum number of measurements $n$ needed to produce an estimator $hat{boldsymbol x}(boldsymbol y)$ that is positively correlated with the signal $boldsymbol x$? We consider the case of Gaussian vectors $boldsymbol a_i$. We prove that - in the high-dimensional limit - a sharp phase transition takes place, and we locate the threshold in the regime of vanishingly small noise. For $nle d-o(d)$ no estimator can do significantly better than random and achieve a strictly positive correlation. For $nge d+o(d)$ a simple spectral estimator achieves a positive correlation. Surprisingly, numerical simulations with the same spectral estimator demonstrate promising performance with realistic sensing matrices. Spectral methods are used to initialize non-convex optimization algorithms in phase retrieval, and our approach can boost the performance in this setting as well. Our impossibility result is based on classical information-theory arguments. The spectral algorithm computes the leading eigenvector of a weighted empirical covariance matrix. We obtain a sharp characterization of the spectral properties of this random matrix using tools from free probability and generalizing a recent result by Lu and Li. Both the upper and lower bound generalize beyond phase retrieval to measurements $y_i$ produced according to a generalized linear model. As a byproduct of our analysis, we compare the threshold of the proposed spectral method with that of a message passing algorithm.
Graph convolutional networks (GCNs) are a widely used method for graph representation learning. To elucidate the capabilities and limitations of GCNs, we investigate their power, as a function of their number of layers, to distinguish between differe
Phase retrieval (PR) is an important component in modern computational imaging systems. Many algorithms have been developed over the past half century. Recent advances in deep learning have opened up a new possibility for robust and fast PR. An emerg
We present the optimal design of a spectral method widely used to initialize nonconvex optimization algorithms for solving phase retrieval and other signal recovery problems. Our work leverages recent results that provide an exact characterization of
Phase retrieval deals with the estimation of complex-valued signals solely from the magnitudes of linear measurements. While there has been a recent explosion in the development of phase retrieval algorithms, the lack of a common interface has made i
We study the problem of recovering a hidden community of cardinality $K$ from an $n times n$ symmetric data matrix $A$, where for distinct indices $i,j$, $A_{ij} sim P$ if $i, j$ both belong to the community and $A_{ij} sim Q$ otherwise, for two know