ﻻ يوجد ملخص باللغة العربية
Recent work has shown that it is possible to train deep neural networks that are provably robust to norm-bounded adversarial perturbations. Most of these methods are based on minimizing an upper bound on the worst-case loss over all possible adversarial perturbations. While these techniques show promise, they often result in difficult optimization procedures that remain hard to scale to larger networks. Through a comprehensive analysis, we show how a simple bounding technique, interval bound propagation (IBP), can be exploited to train large provably robust neural networks that beat the state-of-the-art in verified accuracy. While the upper bound computed by IBP can be quite weak for general networks, we demonstrate that an appropriate loss and clever hyper-parameter schedule allow the network to adapt such that the IBP bound is tight. This results in a fast and stable learning algorithm that outperforms more sophisticated methods and achieves state-of-the-art results on MNIST, CIFAR-10 and SVHN. It also allows us to train the largest model to be verified beyond vacuous bounds on a downscaled version of ImageNet.
Recent works have shown that interval bound propagation (IBP) can be used to train verifiably robust neural networks. Reseachers observe an intriguing phenomenon on these IBP trained networks: CROWN, a bounding method based on tight linear relaxation
Adversarial training (AT) is among the most effective techniques to improve model robustness by augmenting training data with adversarial examples. However, most existing AT methods adopt a specific attack to craft adversarial examples, leading to th
Differentially private stochastic gradient descent (DPSGD) is a variation of stochastic gradient descent based on the Differential Privacy (DP) paradigm which can mitigate privacy threats arising from the presence of sensitive information in training
Neural networks are part of many contemporary NLP systems, yet their empirical successes come at the price of vulnerability to adversarial attacks. Previous work has used adversarial training and data augmentation to partially mitigate such brittlene
In this paper we demonstrate methods for reliable and efficient training of discrete representation using Vector-Quantized Variational Auto-Encoder models (VQ-VAEs). Discrete latent variable models have been shown to learn nontrivial representations