ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Training of Vector Quantized Bottleneck Models

172   0   0.0 ( 0 )
 نشر من قبل Adrian Lancucki
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we demonstrate methods for reliable and efficient training of discrete representation using Vector-Quantized Variational Auto-Encoder models (VQ-VAEs). Discrete latent variable models have been shown to learn nontrivial representations of speech, applicable to unsupervised voice conversion and reaching state-of-the-art performance on unit discovery tasks. For unsupervised representation learning, they became viable alternatives to continuous latent variable models such as the Variational Auto-Encoder (VAE). However, training deep discrete variable models is challenging, due to the inherent non-differentiability of the discretization operation. In this paper we focus on VQ-VAE, a state-of-the-art discrete bottleneck model shown to perform on par with its continuous counterparts. It quantizes encoder outputs with on-line $k$-means clustering. We show that the codebook learning can suffer from poor initialization and non-stationarity of clustered encoder outputs. We demonstrate that these can be successfully overcome by increasing the learning rate for the codebook and periodic date-dependent codeword re-initialization. As a result, we achieve more robust training across different tasks, and significantly increase the usage of latent codewords even for large codebooks. This has practical benefit, for instance, in unsupervised representation learning, where large codebooks may lead to disentanglement of latent representations.



قيم البحث

اقرأ أيضاً

Recent developments in the field of model-based RL have proven successful in a range of environments, especially ones where planning is essential. However, such successes have been limited to deterministic fully-observed environments. We present a ne w approach that handles stochastic and partially-observable environments. Our key insight is to use discrete autoencoders to capture the multiple possible effects of an action in a stochastic environment. We use a stochastic variant of Monte Carlo tree search to plan over both the agents actions and the discrete latent variables representing the environments response. Our approach significantly outperforms an offline version of MuZero on a stochastic interpretation of chess where the opponent is considered part of the environment. We also show that our approach scales to DeepMind Lab, a first-person 3D environment with large visual observations and partial observability.
54 - Zhuohan Li , Di He , Fei Tian 2018
Long Short-Term Memory (LSTM) is one of the most widely used recurrent structures in sequence modeling. It aims to use gates to control information flow (e.g., whether to skip some information or not) in the recurrent computations, although its pract ical implementation based on soft gates only partially achieves this goal. In this paper, we propose a new way for LSTM training, which pushes the output values of the gates towards 0 or 1. By doing so, we can better control the information flow: the gates are mostly open or closed, instead of in a middle state, which makes the results more interpretable. Empirical studies show that (1) Although it seems that we restrict the model capacity, there is no performance drop: we achieve better or comparable performances due to its better generalization ability; (2) The outputs of gates are not sensitive to their inputs: we can easily compress the LSTM unit in multiple ways, e.g., low-rank approximation and low-precision approximation. The compressed models are even better than the baseline models without compression.
Recent work has shown that it is possible to train deep neural networks that are provably robust to norm-bounded adversarial perturbations. Most of these methods are based on minimizing an upper bound on the worst-case loss over all possible adversar ial perturbations. While these techniques show promise, they often result in difficult optimization procedures that remain hard to scale to larger networks. Through a comprehensive analysis, we show how a simple bounding technique, interval bound propagation (IBP), can be exploited to train large provably robust neural networks that beat the state-of-the-art in verified accuracy. While the upper bound computed by IBP can be quite weak for general networks, we demonstrate that an appropriate loss and clever hyper-parameter schedule allow the network to adapt such that the IBP bound is tight. This results in a fast and stable learning algorithm that outperforms more sophisticated methods and achieves state-of-the-art results on MNIST, CIFAR-10 and SVHN. It also allows us to train the largest model to be verified beyond vacuous bounds on a downscaled version of ImageNet.
Abbreviation disambiguation is important for automated clinical note processing due to the frequent use of abbreviations in clinical settings. Current models for automated abbreviation disambiguation are restricted by the scarcity and imbalance of la beled training data, decreasing their generalizability to orthogonal sources. In this work we propose a novel data augmentation technique that utilizes information from related medical concepts, which improves our models ability to generalize. Furthermore, we show that incorporating the global context information within the whole medical note (in addition to the traditional local context window), can significantly improve the models representation for abbreviations. We train our model on a public dataset (MIMIC III) and test its performance on datasets from different sources (CASI, i2b2). Together, these two techniques boost the accuracy of abbreviation disambiguation by almost 14% on the CASI dataset and 4% on i2b2.
We seek to learn models that we can interact with using high-level concepts: if the model did not think there was a bone spur in the x-ray, would it still predict severe arthritis? State-of-the-art models today do not typically support the manipulati on of concepts like the existence of bone spurs, as they are trained end-to-end to go directly from raw input (e.g., pixels) to output (e.g., arthritis severity). We revisit the classic idea of first predicting concepts that are provided at training time, and then using these concepts to predict the label. By construction, we can intervene on these concept bottleneck models by editing their predicted concept values and propagating these changes to the final prediction. On x-ray grading and bird identification, concept bottleneck models achieve competitive accuracy with standard end-to-end models, while enabling interpretation in terms of high-level clinical concepts (bone spurs) or bird attributes (wing color). These models also allow for richer human-model interaction: accuracy improves significantly if we can correct model mistakes on concepts at test time.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا