ﻻ يوجد ملخص باللغة العربية
Differentially private stochastic gradient descent (DPSGD) is a variation of stochastic gradient descent based on the Differential Privacy (DP) paradigm which can mitigate privacy threats arising from the presence of sensitive information in training data. One major drawback of training deep neural networks with DPSGD is a reduction in the models accuracy. In this paper, we propose an alternative method for preserving data privacy based on introducing noise through learnable probability distributions, which leads to a significant improvement in the utility of the resulting private models. We also demonstrate that normalization layers have a large beneficial impact on the performance of deep neural networks with noisy parameters. In particular, we show that contrary to general belief, a large amount of random noise can be added to the weights of neural networks without harming the performance, once the networks are augmented with normalization layers. We hypothesize that this robustness is a consequence of the scale invariance property of normalization operators. Building on these observations, we propose a new algorithmic technique for training deep neural networks under very low privacy budgets by sampling weights from Gaussian distributions and utilizing batch or layer normalization techniques to prevent performance degradation. Our method outperforms previous approaches, including DPSGD, by a substantial margin on a comprehensive set of experiments on Computer Vision and Natural Language Processing tasks. In particular, we obtain a 20 percent accuracy improvement over DPSGD on the MNIST and CIFAR10 datasets with DP-privacy budgets of $varepsilon = 0.05$ and $varepsilon = 2.0$, respectively. Our code is available online: https://github.com/uds-lsv/SIDP.
We show that differentially private stochastic gradient descent (DP-SGD) can yield poorly calibrated, overconfident deep learning models. This represents a serious issue for safety-critical applications, e.g. in medical diagnosis. We highlight and ex
Bayesian neural network (BNN) allows for uncertainty quantification in prediction, offering an advantage over regular neural networks that has not been explored in the differential privacy (DP) framework. We fill this important gap by leveraging rece
The application of differential privacy to the training of deep neural networks holds the promise of allowing large-scale (decentralized) use of sensitive data while providing rigorous privacy guarantees to the individual. The predominant approach to
Neural architecture search, which aims to automatically search for architectures (e.g., convolution, max pooling) of neural networks that maximize validation performance, has achieved remarkable progress recently. In many application scenarios, sever
Differential privacy has emerged as a standard requirement in a variety of applications ranging from the U.S. Census to data collected in commercial devices, initiating an extensive line of research in accurately and privately releasing statistics of