ﻻ يوجد ملخص باللغة العربية
We describe the quantum phase transition in the $N$-state chiral clock model in spatial dimension $d=1$. With couplings chosen to preserve time-reversal and spatial inversion symmetries, such a model is in the universality class of recent experimental studies of the ordering of pumped Rydberg states in a one-dimensional chain of trapped ultracold alkali atoms. For such couplings and $N=3$, the clock model is expected to have a direct phase transition from a gapped phase with a broken global $mathbb{Z}_N$ symmetry, to a gapped phase with the $mathbb{Z}_N$ symmetry restored. The transition has dynamical critical exponent $z eq 1$, and so cannot be described by a relativistic quantum field theory. We use a lattice duality transformation to map the transition onto that of a Bose gas in $d=1$, involving the onset of a single boson condensate in the background of a higher-dimensional $N$-boson condensate. We present a renormalization group analysis of the strongly coupled field theory for the Bose gas transition in an expansion in $2-d$, with $4-N$ chosen to be of order $2-d$. At two-loop order, we find a regime of parameters with a renormalization group fixed point which can describe a direct phase transition. We also present numerical density-matrix renormalization group studies of lattice chiral clock and Bose gas models for $N=3$, finding good evidence for a direct phase transition, and obtain estimates for $z$ and the correlation length exponent $ u$.
Recent experiments on a one-dimensional chain of trapped alkali atoms [arXiv:1707.04344] have observed a quantum transition associated with the onset of period-3 ordering of pumped Rydberg states. This spontaneous $mathbb{Z}_3$ symmetry breaking is d
In this Letter we will show that, in the presence of a properly modulated Dzyaloshinskii-Moriya (DM) interaction, a $U(1)$ vortex-antivortex lattice appears at low temperatures for a wide range of the DM interaction. Even more, in the region dominate
We study the finite-size spectrum of the O($N$) symmetric Wilson-Fisher conformal field theory (CFT) on the $d=2$ spatial-dimension torus using the expansion in $epsilon=3-d$. This is done by deriving a set of universal effective Hamiltonians describ
Quantum phase transition in the one-dimensional period-two and uniform quantum compass model are studied by using the pseudo-spin transformation method and the trace map method. The exact solutions are presented, the fidelity, the nearest-neighbor ps
We study the energy and entanglement dynamics of $(1+1)$D conformal field theories (CFTs) under a Floquet drive with the sine-square deformed (SSD) Hamiltonian. Previous work has shown this model supports both a non-heating and a heating phase. Here