ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical study of the chiral $mathbb{Z}_3$ quantum phase transition in one spatial dimension

102   0   0.0 ( 0 )
 نشر من قبل Rhine Samajdar
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent experiments on a one-dimensional chain of trapped alkali atoms [arXiv:1707.04344] have observed a quantum transition associated with the onset of period-3 ordering of pumped Rydberg states. This spontaneous $mathbb{Z}_3$ symmetry breaking is described by a constrained model of hard-core bosons proposed by Fendley $et, ,al.$ [arXiv:cond-mat/0309438]. By symmetry arguments, the transition is expected to be in the universality class of the $mathbb{Z}_3$ chiral clock model with parameters preserving both time-reversal and spatial-inversion symmetries. We study the nature of the order-disorder transition in these models, and numerically calculate its critical exponents with exact diagonalization and density-matrix renormalization group techniques. We use finite-size scaling to determine the dynamical critical exponent $z$ and the correlation length exponent $ u$. Our analysis presents the only known instance of a strongly-coupled transition between gapped states with $z e 1$, implying an underlying nonconformal critical field theory.



قيم البحث

اقرأ أيضاً

We describe the quantum phase transition in the $N$-state chiral clock model in spatial dimension $d=1$. With couplings chosen to preserve time-reversal and spatial inversion symmetries, such a model is in the universality class of recent experimenta l studies of the ordering of pumped Rydberg states in a one-dimensional chain of trapped ultracold alkali atoms. For such couplings and $N=3$, the clock model is expected to have a direct phase transition from a gapped phase with a broken global $mathbb{Z}_N$ symmetry, to a gapped phase with the $mathbb{Z}_N$ symmetry restored. The transition has dynamical critical exponent $z eq 1$, and so cannot be described by a relativistic quantum field theory. We use a lattice duality transformation to map the transition onto that of a Bose gas in $d=1$, involving the onset of a single boson condensate in the background of a higher-dimensional $N$-boson condensate. We present a renormalization group analysis of the strongly coupled field theory for the Bose gas transition in an expansion in $2-d$, with $4-N$ chosen to be of order $2-d$. At two-loop order, we find a regime of parameters with a renormalization group fixed point which can describe a direct phase transition. We also present numerical density-matrix renormalization group studies of lattice chiral clock and Bose gas models for $N=3$, finding good evidence for a direct phase transition, and obtain estimates for $z$ and the correlation length exponent $ u$.
The quantum Kibble-Zurek mechanism (QKZM) predicts universal dynamical behavior in the vicinity of quantum phase transitions (QPTs). It is now well understood for one-dimensional quantum matter. Higher-dimensional systems, however, remain a challenge , complicated by fundamental differences of the associated QPTs and their underlying conformal field theories. In this work, we take the first steps towards exploring the QKZM in two dimensions. We study the dynamical crossing of the QPT in the paradigmatic Ising model by a joint effort of modern state-of-the-art numerical methods. As a central result, we quantify universal QKZM behavior close to the QPT. However, upon traversing further into the ferromagnetic regime, we observe deviations from the QKZM prediction. We explain the observed behavior by proposing an {it extended QKZM} taking into account spectral information as well as phase ordering. Our work provides a starting point towards the exploration of dynamical universality in higher-dimensional quantum matter.
Considering nonintegrable quantum Ising chains with exponentially decaying interactions, we present matrix product state results that establish a connection between low-energy quasiparticle excitations and the kind of nonanalyticities in the Loschmid t return rate. When domain walls in the spectrum of the quench Hamiltonian are energetically favored to be bound rather than freely propagating, anomalous cusps appear in the return rate regardless of the initial state. In the nearest-neighbor limit, domain walls are always freely propagating, and anomalous cusps never appear. As a consequence, our work illustrates that models in the same equilibrium universality class can still exhibit fundamentally distinct out-of-equilibrium criticality. Our results are accessible to current ultracold-atom and ion-trap experiments.
We continue recent efforts to discover examples of deconfined quantum criticality in one-dimensional models. In this work we investigate the transition between a $mathbb{Z}_3$ ferromagnet and a phase with valence bond solid (VBS) order in a spin chai n with $mathbb{Z}_3timesmathbb{Z}_3$ global symmetry. We study a model with alternating projective representations on the sites of the two sublattices, allowing the Hamiltonian to connect to an exactly solvable point having VBS order with the character of SU(3)-invariant singlets. Such a model does not admit a Lieb-Schultz-Mattis theorem typical of systems realizing deconfined critical points. Nevertheless, we find evidence for a direct transition from the VBS phase to a $mathbb{Z}_3$ ferromagnet. Finite-entanglement scaling data are consistent with a second-order or weakly first-order transition. We find in our parameter space an integrable lattice model apparently describing the phase transition, with a very long, finite, correlation length of 190878 lattice spacings. Based on exact results for this model, we propose that the transition is extremely weakly first order, and is part of a family of DQCP described by walking of renormalization group flows.
For a mobile spin-1/2 impurity, coupled antiferromagnetically to a one-dimensional gas of fermions, perturbative ideas have been used to argue in favor of two-channel Kondo behavior of the impurity spin. Here we combine general considerations and ext ensive numerical simulations to show that the problem displays a novel quantum phase transition between two-channel and one-channel Kondo screening upon increasing the Kondo coupling. We construct a ground-state phase diagram and discuss the various non-trivial crossovers as well as possible experimental realizations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا