ﻻ يوجد ملخص باللغة العربية
We study the finite-size spectrum of the O($N$) symmetric Wilson-Fisher conformal field theory (CFT) on the $d=2$ spatial-dimension torus using the expansion in $epsilon=3-d$. This is done by deriving a set of universal effective Hamiltonians describing fluctuations of the zero momentum modes. The effective Hamiltonians take the form of $N$-dimensional quantum anharmonic oscillators, which are shown to be strongly coupled at the critical point for small $epsilon$. The low-energy spectrum is solved numerically for $N = 1,2,3,4$. Using exact diagonalization (ED), we also numerically study explicit lattice models known to be in the O($2$) and O($3$) universality class, obtaining estimates of the low-lying critical spectrum. The analytic and numerical results show excellent agreement and the critical low energy torus spectra are qualitatively different among the studied CFTs, identifying them as a useful fingerprint for detecting the universality class of a quantum critical point.
We compute the entanglement entropy of the Wilson-Fisher conformal field theory (CFT) in 2+1 dimensions with O($N$) symmetry in the limit of large $N$ for general entanglement geometries. We show that the leading large $N$ result can be obtained from
In one dimension, the area law and its implications for the approximability by Matrix Product States are the key to efficient numerical simulations involving quantum states. Similarly, in simulations involving quantum operators, the approximability b
We describe the quantum phase transition in the $N$-state chiral clock model in spatial dimension $d=1$. With couplings chosen to preserve time-reversal and spatial inversion symmetries, such a model is in the universality class of recent experimenta
We study the energy and entanglement dynamics of $(1+1)$D conformal field theories (CFTs) under a Floquet drive with the sine-square deformed (SSD) Hamiltonian. Previous work has shown this model supports both a non-heating and a heating phase. Here
We study gapless quantum spin chains with spin 1/2 and 1: the Fredkin and Motzkin models. Their entangled groundstates are known exactly but not their excitation spectra. We first express the groundstates in the continuum which allows for the calcula