ﻻ يوجد ملخص باللغة العربية
In this Letter we will show that, in the presence of a properly modulated Dzyaloshinskii-Moriya (DM) interaction, a $U(1)$ vortex-antivortex lattice appears at low temperatures for a wide range of the DM interaction. Even more, in the region dominated by the exchange interaction, a standard BKT transition occurs. In the opposite regime, the one dominated by the DM interaction, a kind of inverse BKT transition (iBKT) takes place. As temperature rises, the vortex-antivortex lattice starts melting by annihilation of pairs of vortex-antivortex, in a sort of inverse BKT transition.
We have considered two classical lattice-gas models, consisting of particles that carry multicomponent magnetic momenta, and associated with a two-dimensional square lattices; each site can host one particle at most, thus implicitly allowing for hard
The non-equilibrium annealing of structural disorder in a two-dimensional XY-model leads to coarsening of defects clusters in a cores of spin vortices. We revealed the effect of inertial growth of the clusters in coarsening dynamic regime. The calcul
The superfluid to normal fluid transition of dipolar bosons in two dimensions is studied throughout the whole density range using path integral Monte Carlo simulations and summarized in the phase diagram. While at low densities, we find good agreemen
The Berezinskii-Kosterlitz-Thouless (BKT) mechanism, building upon proliferation of topological defects in 2D systems, is the first example of phase transition beyond the Landau-Ginzburg paradigm of symmetry breaking. Such a topological phase transit
We study the phase diagram and critical behavior of a two-dimensional lattice SO($N_c$) gauge theory ($N_c ge 3$) with two scalar flavors, obtained by partially gauging a maximally O($2N_c$) symmetric scalar model. The model is invariant under local