ﻻ يوجد ملخص باللغة العربية
We study the problem of matching agents who arrive at a marketplace over time and leave after d time periods. Agents can only be matched while they are present in the marketplace. Each pair of agents can yield a different match value, and the planners goal is to maximize the total value over a finite time horizon. First we study the case in which vertices arrive in an adversarial order. We provide a randomized 0.25-competitive algorithm building on a result by Feldman et al. (2009) and Lehman et al. (2006). We extend the model to the case in which departure times are drawn independently from a distribution with non-decreasing hazard rate, for which we establish a 1/8-competitive algorithm. When the arrival order is chosen uniformly at random, we show that a batching algorithm, which computes a maximum-weighted matching every (d+1) periods, is 0.279-competitive.
The rich literature on online Bayesian selection problems has long focused on so-called prophet inequalities, which compare the gain of an online algorithm to that of a prophet who knows the future. An equally-natural, though significantly less well-
We study an online hypergraph matching problem with delays, motivated by ridesharing applications. In this model, users enter a marketplace sequentially, and are willing to wait up to $d$ timesteps to be matched, after which they will leave the syste
We provide prophet inequality algorithms for online weighted matching in general (non-bipartite) graphs, under two well-studied arrival models, namely edge arrival and vertex arrival. The weight of each edge is drawn independently from an a-priori kn
Online bipartite matching with edge arrivals remained a major open question for a long time until a recent negative result by [Gamlath et al. FOCS 2019], who showed that no online policy is better than the straightforward greedy algorithm, i.e., no o
We study the greedy-based online algorithm for edge-weighted matching with (one-sided) vertex arrivals in bipartite graphs, and edge arrivals in general graphs. This algorithm was first studied more than a decade ago by Korula and Pal for the biparti