ترغب بنشر مسار تعليمي؟ اضغط هنا

Online Hypergraph Matching with Delays

191   0   0.0 ( 0 )
 نشر من قبل Matthew Tsao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study an online hypergraph matching problem with delays, motivated by ridesharing applications. In this model, users enter a marketplace sequentially, and are willing to wait up to $d$ timesteps to be matched, after which they will leave the system in favor of an outside option. A platform can match groups of up to $k$ users together, indicating that they will share a ride. Each group of users yields a match value depending on how compatible they are with one another. As an example, in ridesharing, $k$ is the capacity of the service vehicles, and $d$ is the amount of time a user is willing to wait for a driver to be matched to them. We present results for both the utility maximization and cost minimization variants of the problem. In the utility maximization setting, the optimal competitive ratio is $frac{1}{d}$ whenever $k geq 3$, and is achievable in polynomial-time for any fixed $k$. In the cost minimization variation, when $k = 2$, the optimal competitive ratio for deterministic algorithms is $frac{3}{2}$ and is achieved by a polynomial-time thresholding algorithm. When $k>2$, we show that a polynomial-time randomized batching algorithm is $(2 - frac{1}{d}) log k$-competitive, and it is NP-hard to achieve a competitive ratio better than $log k - O (log log k)$.

قيم البحث

اقرأ أيضاً

126 - Darya Melnyk , Yuyi Wang , 2021
In this paper, we study $k$-Way Min-cost Perfect Matching with Delays - the $k$-MPMD problem. This problem considers a metric space with $n$ nodes. Requests arrive at these nodes in an online fashion. The task is to match these requests into sets of exactly $k$, such that the space and time cost of all matched requests are minimized. The notion of the space cost requires a definition of an underlying metric space that gives distances of subsets of $k$ elements. For $k>2$, the task of finding a suitable metric space is at the core of our problem: We show that for some known generalizations to $k=3$ points, such as the $2$-metric and the $D$-metric, there exists no competitive randomized algorithm for the $3$-MPMD problem. The $G$-metrics are defined for 3 points and allows for a competitive algorithm for the $3$-MPMD problem. For $k>3$ points, there exist two generalizations of the $G$-metrics known as $n$- and $K$-metrics. We show that neither the $n$-metrics nor the $K$-metrics can be used for the $k$-MPMD problem. On the positive side, we introduce the $H$-metrics, the first metrics to allow for a solution of the $k$-MPMD problem for all $k$. In order to devise an online algorithm for the $k$-MPMD problem on the $H$-metrics, we embed the $H$-metric into trees with an $O(log n)$ distortion. Based on this embedding result, we extend the algorithm proposed by Azar et al. (2017) and achieve a competitive ratio of $O(log n)$ for the $k$-MPMD problem.
68 - Kangning Wang 2021
For online matching with the line metric, we present a lower bound of $Omega(log n)$ on the approximation ratio of any online (possibly randomized) algorithm. This beats the previous best lower bound of $Omega(sqrt{log n})$ and matches the known upper bound of $O(log n)$.
Online bipartite matching with edge arrivals remained a major open question for a long time until a recent negative result by [Gamlath et al. FOCS 2019], who showed that no online policy is better than the straightforward greedy algorithm, i.e., no o nline algorithm has a worst-case competitive ratio better than $0.5$. In this work, we consider the bipartite matching problem with edge arrivals in a natural stochastic framework, i.e., Bayesian setting where each edge of the graph is independently realized according to a known probability distribution. We focus on a natural class of prune & greedy online policies motivated by practical considerations from a multitude of online matching platforms. Any prune & greedy algorithm consists of two stages: first, it decreases the probabilities of some edges in the stochastic instance and then runs greedy algorithm on the pruned graph. We propose prune & greedy algorithms that are $0.552$-competitive on the instances that can be pruned to a $2$-regular stochastic bipartite graph, and $0.503$-competitive on arbitrary bipartite graphs. The algorithms and our analysis significantly deviate from the prior work. We first obtain analytically manageable lower bound on the size of the matching, which leads to a non linear optimization problem. We further reduce this problem to a continuous optimization with a constant number of parameters that can be solved using standard software tools.
We study the problem of matching agents who arrive at a marketplace over time and leave after d time periods. Agents can only be matched while they are present in the marketplace. Each pair of agents can yield a different match value, and the planner s goal is to maximize the total value over a finite time horizon. First we study the case in which vertices arrive in an adversarial order. We provide a randomized 0.25-competitive algorithm building on a result by Feldman et al. (2009) and Lehman et al. (2006). We extend the model to the case in which departure times are drawn independently from a distribution with non-decreasing hazard rate, for which we establish a 1/8-competitive algorithm. When the arrival order is chosen uniformly at random, we show that a batching algorithm, which computes a maximum-weighted matching every (d+1) periods, is 0.279-competitive.
We study the greedy-based online algorithm for edge-weighted matching with (one-sided) vertex arrivals in bipartite graphs, and edge arrivals in general graphs. This algorithm was first studied more than a decade ago by Korula and Pal for the biparti te case in the random-order model. While the weighted bipartite matching problem is solved in the random-order model, this is not the case in recent and exciting online models in which the online player is provided with a sample, and the arrival order is adversarial. The greedy-based algorithm is arguably the most natural and practical algorithm to be applied in these models. Despite its simplicity and appeal, and despite being studied in multiple works, the greedy-based algorithm was not fully understood in any of the studied online models, and its actual performance remained an open question for more than a decade. We provide a thorough analysis of the greedy-based algorithm in several online models. For vertex arrivals in bipartite graphs, we characterize the exact competitive-ratio of this algorithm in the random-order model, for any arrival order of the vertices subsequent to the sampling phase (adversarial and random orders in particular). We use it to derive tight analysis in the recent adversarial-order model with a sample (AOS model) for any sample size, providing the first result in this model beyond the simple secretary problem. Then, we generalize and strengthen the black box method of converting results in the random-order model to single-sample prophet inequalities, and use it to derive the state-of-the-art single-sample prophet inequality for the problem. Finally, we use our new techniques to analyze the greedy-based algorithm for edge arrivals in general graphs and derive results in all the mentioned online models. In this case as well, we improve upon the state-of-the-art single-sample prophet inequality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا