ﻻ يوجد ملخص باللغة العربية
The rich literature on online Bayesian selection problems has long focused on so-called prophet inequalities, which compare the gain of an online algorithm to that of a prophet who knows the future. An equally-natural, though significantly less well-studied benchmark is the optimum online algorithm, which may be omnipotent (i.e., computationally-unbounded), but not omniscient. What is the computational complexity of the optimum online? How well can a polynomial-time algorithm approximate it? We study the above questions for the online stochastic maximum-weight matching problem under vertex arrivals. For this problem, a number of $1/2$-competitive algorithms are known against optimum offline. This is the best possible ratio for this problem, as it generalizes the original single-item prophet inequality problem. We present a polynomial-time algorithm which approximates the optimal online algorithm within a factor of $0.51$ -- beating the best-possible prophet inequality. In contrast, we show that it is PSPACE-hard to approximate this problem within some constant $alpha < 1$.
We provide prophet inequality algorithms for online weighted matching in general (non-bipartite) graphs, under two well-studied arrival models, namely edge arrival and vertex arrival. The weight of each edge is drawn independently from an a-priori kn
Online bipartite matching and its variants are among the most fundamental problems in the online algorithms literature. Karp, Vazirani, and Vazirani (STOC 1990) introduced an elegant algorithm for the unweighted problem that achieves an optimal compe
Consider a gambler who observes a sequence of independent, non-negative random numbers and is allowed to stop the sequence at any time, claiming a reward equal to the most recent observation. The famous prophet inequality of Krengel, Sucheston, and G
We study the problem of matching agents who arrive at a marketplace over time and leave after d time periods. Agents can only be matched while they are present in the marketplace. Each pair of agents can yield a different match value, and the planner
We study the minimum-cost metric perfect matching problem under online i.i.d arrivals. We are given a fixed metric with a server at each of the points, and then requests arrive online, each drawn independently from a known probability distribution ov