ترغب بنشر مسار تعليمي؟ اضغط هنا

Online Stochastic Max-Weight Matching: prophet inequality for vertex and edge arrival models

71   0   0.0 ( 0 )
 نشر من قبل Nick Gravin
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide prophet inequality algorithms for online weighted matching in general (non-bipartite) graphs, under two well-studied arrival models, namely edge arrival and vertex arrival. The weight of each edge is drawn independently from an a-priori known probability distribution. Under edge arrival, the weight of each edge is revealed upon arrival, and the algorithm decides whether to include it in the matching or not. Under vertex arrival, the weights of all edges from the newly arriving vertex to all previously arrived vertices are revealed, and the algorithm decides which of these edges, if any, to include in the matching. To study these settings, we introduce a novel unified framework of batched prophet inequalities that captures online settings where elements arrive in batches; in particular it captures matching under the two aforementioned arrival models. Our algorithms rely on the construction of suitable online contention resolution scheme (OCRS). We first extend the framework of OCRS to batched-OCRS, we then establish a reduction from batched prophet inequality to batched OCRS, and finally we construct batched OCRSs with selectable ratios of 0.337 and 0.5 for edge and vertex arrival models, respectively. Both results improve the state of the art for the corresponding settings. For the vertex arrival, our result is tight. Interestingly, a pricing-based prophet inequality with comparable competitive ratios is unknown.



قيم البحث

اقرأ أيضاً

The rich literature on online Bayesian selection problems has long focused on so-called prophet inequalities, which compare the gain of an online algorithm to that of a prophet who knows the future. An equally-natural, though significantly less well- studied benchmark is the optimum online algorithm, which may be omnipotent (i.e., computationally-unbounded), but not omniscient. What is the computational complexity of the optimum online? How well can a polynomial-time algorithm approximate it? We study the above questions for the online stochastic maximum-weight matching problem under vertex arrivals. For this problem, a number of $1/2$-competitive algorithms are known against optimum offline. This is the best possible ratio for this problem, as it generalizes the original single-item prophet inequality problem. We present a polynomial-time algorithm which approximates the optimal online algorithm within a factor of $0.51$ -- beating the best-possible prophet inequality. In contrast, we show that it is PSPACE-hard to approximate this problem within some constant $alpha < 1$.
Online bipartite matching with edge arrivals remained a major open question for a long time until a recent negative result by [Gamlath et al. FOCS 2019], who showed that no online policy is better than the straightforward greedy algorithm, i.e., no o nline algorithm has a worst-case competitive ratio better than $0.5$. In this work, we consider the bipartite matching problem with edge arrivals in a natural stochastic framework, i.e., Bayesian setting where each edge of the graph is independently realized according to a known probability distribution. We focus on a natural class of prune & greedy online policies motivated by practical considerations from a multitude of online matching platforms. Any prune & greedy algorithm consists of two stages: first, it decreases the probabilities of some edges in the stochastic instance and then runs greedy algorithm on the pruned graph. We propose prune & greedy algorithms that are $0.552$-competitive on the instances that can be pruned to a $2$-regular stochastic bipartite graph, and $0.503$-competitive on arbitrary bipartite graphs. The algorithms and our analysis significantly deviate from the prior work. We first obtain analytically manageable lower bound on the size of the matching, which leads to a non linear optimization problem. We further reduce this problem to a continuous optimization with a constant number of parameters that can be solved using standard software tools.
Online bipartite matching and its variants are among the most fundamental problems in the online algorithms literature. Karp, Vazirani, and Vazirani (STOC 1990) introduced an elegant algorithm for the unweighted problem that achieves an optimal compe titive ratio of $1-1/e$. Later, Aggarwal et al. (SODA 2011) generalized their algorithm and analysis to the vertex-weighted case. Little is known, however, about the most general edge-weighted problem aside from the trivial $1/2$-competitive greedy algorithm. In this paper, we present the first online algorithm that breaks the long-standing $1/2$ barrier and achieves a competitive ratio of at least $0.5086$. In light of the hardness result of Kapralov, Post, and Vondrak (SODA 2013) that restricts beating a $1/2$ competitive ratio for the more general problem of monotone submodular welfare maximization, our result can be seen as strong evidence that edge-weighted bipartite matching is strictly easier than submodular welfare maximization in the online setting. The main ingredient in our online matching algorithm is a novel subroutine called online correlated selection (OCS), which takes a sequence of pairs of vertices as input and selects one vertex from each pair. Instead of using a fresh random bit to choose a vertex from each pair, the OCS negatively correlates decisions across different pairs and provides a quantitative measure on the level of correlation. We believe our OCS technique is of independent interest and will find further applications in other online optimization problems.
72 - Zhiyi Huang , Runzhou Tao 2019
This article identifies a key algorithmic ingredient in the edge-weighted online matching algorithm by Zadimoghaddam (2017) and presents a simplified algorithm and its analysis to demonstrate how it works in the unweighted case.
69 - Jack Wang 2018
The setting of the classic prophet inequality is as follows: a gambler is shown the probability distributions of $n$ independent, non-negative random variables with finite expectations. In their indexed order, a value is drawn from each distribution, and after every draw the gambler may choose to accept the value and end the game, or discard the value permanently and continue the game. What is the best performance that the gambler can achieve in comparison to a prophet who can always choose the highest value? Krengel, Sucheston, and Garling solved this problem in 1978, showing that there exists a strategy for which the gambler can achieve half as much reward as the prophet in expectation. Furthermore, this result is tight. In this work, we consider a setting in which the gambler is allowed much less information. Suppose that the gambler can only take one sample from each of the distributions before playing the game, instead of knowing the full distributions. We provide a simple and intuitive algorithm that recovers the original approximation of $frac{1}{2}$. Our algorithm works against even an almighty adversary who always chooses a worst-case ordering, rather than the standard offline adversary. The result also has implications for mechanism design -- there is much interest in designing competitive auctions with a finite number of samples from value distributions rather than full distributional knowledge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا