ترغب بنشر مسار تعليمي؟ اضغط هنا

Conditioned outputs, distribution of decision times and measurement-based feedback scheme for continuous weak linear measurement of a simple quantum system

169   0   0.0 ( 0 )
 نشر من قبل Albert Franquet Gonz\\'alez
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We address the peculiarities of the quantum measurement process in the course of a continuous weak linear measurement (CWLM). As a tool, we implement an efficient numerical simulation scheme that allows us to generate single quantum trajectories of the measured system state as well as the recorded detector signal, and study statistics of these trajectories with and without post-selection. In this scheme, a linear detector is modelled with a qubit that is weakly coupled to the quantum system measured and is subject to projective measurement and re-initialization after a time interval at each simulation step. We explain the conditions under which the scheme provides an accurate description of CWLM. We restrict ourselves to a qubit non-demolition measurement. The qubit is initially in an equal-weight superposition of two quantum states. In the course of time, the detector signal is accumulated and the superposition is destroyed. The times required to resolve the quantum states and to destroy the superposition are of the same order. We prove numerically a rather counter intuitive fact: the average detector output conditioned on the final state does not depend on time. It looks like from the very beginning, the qubit knows in which state it is. We study statistics of decision times where the decision time is defined as time required for the density matrix along a certain trajectory to reach a threshold where it is close to one of the resulting states. This statistics is useful to estimate how fast a decisive CWLM can be. Basing on this, we devise and study a simple feedback scheme that attempts to keep the qubit in the equal-weight superposition. The detector readings are used to decide in which state the qubit is and which correction rotation to apply to bring it back to the superposition. We show how to optimize the feedback parameters and move towards more efficient feedback schemes.

قيم البحث

اقرأ أيضاً

We address the statistics of continuous weak linear measurement on a few-state quantum system that is subject to a conditioned quantum evolution. For a conditioned evolution, both the initial and final states of the system are fixed: the latter is ac hieved by the post-selection in the end of the evolution. The statistics may drastically differ from the non-conditioned case, and the interference between initial and final states can be observed in the probability distributions of measurement outcomes as well as in the average values exceeding the conventional range of non-conditioned averages. We develop a proper formalism to compute the distributions of measurement outcomes, evaluate and discuss the distributions in experimentally relevant setups. We demonstrate the manifestations of the interference between initial and final states in various regimes. We consider analytically simple examples of non-trivial probability distributions. We reveal peaks (or dips) at half-quantized values of the measurement outputs. We discuss in detail the case of zero overlap between initial and final states demonstrating anomalously big average outputs and sudden jump in time-integrated output. We present and discuss the numerical evaluation of the probability distribution aiming at extend- ing the analytic results and describing a realistic experimental situation of a qubit in the regime of resonant fluorescence.
For a quantum-mechanically spread-out particle we investigate a method for determining its arrival time at a specific location. The procedure is based on the emission of a first photon from a two-level system moving into a laser-illuminated region. T he resulting temporal distribution is explicitly calculated for the one-dimensional case and compared with axiomatically proposed expressions. As a main result we show that by means of a deconvolution one obtains the well known quantum mechanical probability flux of the particle at the location as a limiting distribution.
We address the statistics of a simultaneous CWLM of two non-commuting variables on a few-state quantum system subject to a conditioned evolution. Both conditioned quantum measurement and that of two non-commuting variables differ drastically for eith er classical or quantum projective measurement, and we explore the peculiarities brought by the combination of the two. We put forward a proper formalism for the evaluation of the distributions of measurement outcomes. We compute and discuss the statistics in idealized and experimentally relevant setups. We demonstrate the visibility and manifestations of the interference between initial and final states in the statistics of measurement outcomes for both variables in various regimes. We analytically predict the peculiarities at the circle ${cal O}^2_1+{cal O}^2_2=1$ in the distribution of measurement outcomes in the limit of short measurement times and confirm this by numerical calculation at longer measurement times. We demonstrate analytically anomalously large values of the time-integrated output cumulants in the limit of short measurement times(sudden jump) and zero overlap between initial and final states, and give the detailed distributions. We present the numerical evaluation of the probability distributions for experimentally relevant parameters in several regimes and demonstrate that interference effects in the conditioned measurement can be accurately predicted even if they are small.
This paper is concerned with a risk-sensitive optimal control problem for a feedback connection of a quantum plant with a measurement-based classical controller. The plant is a multimode open quantum harmonic oscillator driven by a multichannel quant um Wiener process, and the controller is a linear time invariant system governed by a stochastic differential equation. The control objective is to stabilize the closed-loop system and minimize the infinite-horizon asymptotic growth rate of a quadratic-exponential functional (QEF) which penalizes the plant variables and the controller output. We combine a frequency-domain representation of the QEF growth rate, obtained recently, with variational techniques and establish first-order necessary conditions of optimality for the state-space matrices of the controller.
66 - Leigh S. Martin 2020
The standard quantum formalism introduced at the undergraduate level treats measurement as an instantaneous collapse. In reality however, no physical process can occur over a truly infinitesimal time interval. A more subtle investigation of open quan tum systems lead to the theory of continuous measurement and quantum trajectories, in which wave function collapse occurs over a finite time scale associated with an interaction. Within this formalism, it becomes possible to ask many new questions that would be trivial or even ill-defined in the context of the more basic measurement model. In this thesis, we investigate both theoretically and experimentally what fundamentally new capabilities arise when an experimental apparatus can resolve the continuous dynamics of a measurement. Theoretically, we show that when one can perform feedback operations on the timescale of the measurement process, the resulting tools provide significantly more control over entanglement generation, and in some settings can generate it optimally. We derive these results using a novel formalism which encompasses most known quantum feedback protocols. Experimentally, we show that continuous measurement allows one to observe the dynamics of a system undergoing simultaneous non-commuting measurements, which provides a reinterpretation of the Heisenberg uncertainty principle. Finally, we combine the theoretical focus on quantum feedback with the experimental capabilities of superconducting circuits to implement a feedback controlled quantum amplifier. The resulting system is capable of adaptive measurement, which we use to perform the first canonical phase measurement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا