ﻻ يوجد ملخص باللغة العربية
For a quantum-mechanically spread-out particle we investigate a method for determining its arrival time at a specific location. The procedure is based on the emission of a first photon from a two-level system moving into a laser-illuminated region. The resulting temporal distribution is explicitly calculated for the one-dimensional case and compared with axiomatically proposed expressions. As a main result we show that by means of a deconvolution one obtains the well known quantum mechanical probability flux of the particle at the location as a limiting distribution.
Using the concept of crossing state and the formalism of second quantization, we propose a prescription for computing the density of arrivals of particles for multiparticle states, both in the free and the interacting case. The densities thus compute
A simple model of quantum particle is proposed in which the particle in a {it macroscopic} rest frame is represented by a {it microscopic d}-dimensional oscillator, {it s=(d-1)/2} being the spin of the particle. The state vectors are defined simply b
We model ideal arrival-time measurements for free quantum particles and for particles subject to an external interaction by means of a narrow and weak absorbing potential. This approach is related to the operational approach of measuring the first ph
The LSND and MiniBoone seeming anomalies in neutrino oscillations are usually attributed to physics beyond the Standard model. It is, however, possible that they may be an artefact of the theoretical treatment of particle oscillations that ignores fi
Efficient quantum state measurement is important for maximizing the extracted information from a quantum system. For multi-qubit quantum processors in particular, the development of a scalable architecture for rapid and high-fidelity readout remains