ﻻ يوجد ملخص باللغة العربية
We address the statistics of a simultaneous CWLM of two non-commuting variables on a few-state quantum system subject to a conditioned evolution. Both conditioned quantum measurement and that of two non-commuting variables differ drastically for either classical or quantum projective measurement, and we explore the peculiarities brought by the combination of the two. We put forward a proper formalism for the evaluation of the distributions of measurement outcomes. We compute and discuss the statistics in idealized and experimentally relevant setups. We demonstrate the visibility and manifestations of the interference between initial and final states in the statistics of measurement outcomes for both variables in various regimes. We analytically predict the peculiarities at the circle ${cal O}^2_1+{cal O}^2_2=1$ in the distribution of measurement outcomes in the limit of short measurement times and confirm this by numerical calculation at longer measurement times. We demonstrate analytically anomalously large values of the time-integrated output cumulants in the limit of short measurement times(sudden jump) and zero overlap between initial and final states, and give the detailed distributions. We present the numerical evaluation of the probability distributions for experimentally relevant parameters in several regimes and demonstrate that interference effects in the conditioned measurement can be accurately predicted even if they are small.
We address the statistics of continuous weak linear measurement on a few-state quantum system that is subject to a conditioned quantum evolution. For a conditioned evolution, both the initial and final states of the system are fixed: the latter is ac
The possibility of performing simultaneous measurements in quantum mechanics is investigated in the context of the Curie-Weiss model for a projective measurement. Concretely, we consider a spin-$frac{1}{2}$ system simultaneously interacting with two
We consider the temporal correlations of the quantum state of a qubit subject to simultaneous continuous measurement of two non-commuting qubit observables. Such qubit state correlators are defined for an ensemble of qubit trajectories, which has the
We study quantum algorithms working on classical probability distributions. We formulate four different models for accessing a classical probability distribution on a quantum computer, which are derived from previous work on the topic, and study thei
Entanglement distillation is an essential ingredient for long distance quantum communications. In the continuous variable setting, Gaussian states play major roles in quantum teleportation, quantum cloning and quantum cryptography. However, entanglem