ترغب بنشر مسار تعليمي؟ اضغط هنا

Probability distributions of continuous measurement results for conditioned quantum evolution

71   0   0.0 ( 0 )
 نشر من قبل Albert Franquet Gonz\\'alez
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We address the statistics of continuous weak linear measurement on a few-state quantum system that is subject to a conditioned quantum evolution. For a conditioned evolution, both the initial and final states of the system are fixed: the latter is achieved by the post-selection in the end of the evolution. The statistics may drastically differ from the non-conditioned case, and the interference between initial and final states can be observed in the probability distributions of measurement outcomes as well as in the average values exceeding the conventional range of non-conditioned averages. We develop a proper formalism to compute the distributions of measurement outcomes, evaluate and discuss the distributions in experimentally relevant setups. We demonstrate the manifestations of the interference between initial and final states in various regimes. We consider analytically simple examples of non-trivial probability distributions. We reveal peaks (or dips) at half-quantized values of the measurement outputs. We discuss in detail the case of zero overlap between initial and final states demonstrating anomalously big average outputs and sudden jump in time-integrated output. We present and discuss the numerical evaluation of the probability distribution aiming at extend- ing the analytic results and describing a realistic experimental situation of a qubit in the regime of resonant fluorescence.



قيم البحث

اقرأ أيضاً

We address the statistics of a simultaneous CWLM of two non-commuting variables on a few-state quantum system subject to a conditioned evolution. Both conditioned quantum measurement and that of two non-commuting variables differ drastically for eith er classical or quantum projective measurement, and we explore the peculiarities brought by the combination of the two. We put forward a proper formalism for the evaluation of the distributions of measurement outcomes. We compute and discuss the statistics in idealized and experimentally relevant setups. We demonstrate the visibility and manifestations of the interference between initial and final states in the statistics of measurement outcomes for both variables in various regimes. We analytically predict the peculiarities at the circle ${cal O}^2_1+{cal O}^2_2=1$ in the distribution of measurement outcomes in the limit of short measurement times and confirm this by numerical calculation at longer measurement times. We demonstrate analytically anomalously large values of the time-integrated output cumulants in the limit of short measurement times(sudden jump) and zero overlap between initial and final states, and give the detailed distributions. We present the numerical evaluation of the probability distributions for experimentally relevant parameters in several regimes and demonstrate that interference effects in the conditioned measurement can be accurately predicted even if they are small.
69 - Aleksandrs Belovs 2019
We study quantum algorithms working on classical probability distributions. We formulate four different models for accessing a classical probability distribution on a quantum computer, which are derived from previous work on the topic, and study thei r mutual relationships. Additionally, we prove that quantum query complexity of distinguishing two probability distributions is given by their inverse Hellinger distance, which gives a quadratic improvement over classical query complexity for any pair of distributions. The results are obtained by using the adversary method for state-generating input oracles and for distinguishing probability distributions on input strings.
We address the peculiarities of the quantum measurement process in the course of a continuous weak linear measurement (CWLM). As a tool, we implement an efficient numerical simulation scheme that allows us to generate single quantum trajectories of t he measured system state as well as the recorded detector signal, and study statistics of these trajectories with and without post-selection. In this scheme, a linear detector is modelled with a qubit that is weakly coupled to the quantum system measured and is subject to projective measurement and re-initialization after a time interval at each simulation step. We explain the conditions under which the scheme provides an accurate description of CWLM. We restrict ourselves to a qubit non-demolition measurement. The qubit is initially in an equal-weight superposition of two quantum states. In the course of time, the detector signal is accumulated and the superposition is destroyed. The times required to resolve the quantum states and to destroy the superposition are of the same order. We prove numerically a rather counter intuitive fact: the average detector output conditioned on the final state does not depend on time. It looks like from the very beginning, the qubit knows in which state it is. We study statistics of decision times where the decision time is defined as time required for the density matrix along a certain trajectory to reach a threshold where it is close to one of the resulting states. This statistics is useful to estimate how fast a decisive CWLM can be. Basing on this, we devise and study a simple feedback scheme that attempts to keep the qubit in the equal-weight superposition. The detector readings are used to decide in which state the qubit is and which correction rotation to apply to bring it back to the superposition. We show how to optimize the feedback parameters and move towards more efficient feedback schemes.
We investigate the statistical arrow of time for a quantum system being monitored by a sequence of measurements. For a continuous qubit measurement example, we demonstrate that time-reversed evolution is always physically possible, provided that the measurement record is also negated. Despite this restoration of dynamical reversibility, a statistical arrow of time emerges, and may be quantified by the log-likelihood difference between forward and backward propagation hypotheses. We then show that such reversibility is a universal feature of non-projective measurements, with forward or backward Janus measurement sequences that are time-reversed inverses of each other.
The aim of device-independent quantum key distribution (DIQKD) is to study protocols that allow the generation of a secret shared key between two parties under minimal assumptions on the devices that produce the key. These devices are merely modeled as black boxes and mathematically described as conditional probability distributions. A major obstacle in the analysis of DIQKD protocols is the huge space of possible black box behaviors. De Finetti theorems can help to overcome this problem by reducing the analysis to black boxes that have an iid structure. Here we show two new de Finetti theorems that relate conditional probability distributions in the quantum set to de Finetti distributions (convex combinations of iid distributions), that are themselves in the quantum set. We also show how one of these de Finetti theorems can be used to enforce some restrictions onto the attacker of a DIQKD protocol. Finally we observe that some desirable strengthenings of this restriction, for instance to collective attacks only, are not straightforwardly possible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا