ﻻ يوجد ملخص باللغة العربية
Debris disks can be seen as the left-overs of giant planet formation and the possible nurseries of rocky planets. While M-type stars out-number more massive stars we know very little about the time evolution of their circumstellar disks at ages older than $sim 10$,Myr. Sub-millimeter observations are best to provide first order estimates of the available mass reservoir and thus better constrain the evolution of such disks. Here, we present ALMA Cycle,3 Band,7 observations of the debris disk around the M2 star TWA,7, which had been postulated to harbor two spatially separated dust belts, based on unresolved far-infrared and sub-millimeter data. We show that most of the emission at wavelengths longer than $sim 300$,$mu$m is in fact arising from a contaminant source, most likely a sub-mm galaxy, located at about 6.6 East of TWA,7 (in 2016). Fortunately, the high resolution of our ALMA data allows us to disentangle the contaminant emission from that of the disc and report a significant detection of the disk in the sub-millimeter for the first time with a flux density of 2.1$pm$0.4 mJy at 870 $mu$m. With this detection, we show that the SED can be reproduced with a single dust belt.
IRS 7 is an M red supergiant star which is located at $5.5$ north of Sagittarius A$^ast$. We detected firstly the continuum emission at 340 GHz of IRS 7 using ALMA. The total flux density of IRS 7 is $S_ u=448pm45 mu$Jy. The flux density indicates th
We present the first images of four debris disks observed in scattered light around the young (4--250 Myr old) M dwarfs TWA 7 and TWA 25, the K6 star HD 35650, and the G2 star HD 377. We obtained these images by reprocessing archival Hubble Space Tel
OTS44 is one of only four free-floating planets known to have a disk. We have previously shown that it is the coolest and least massive known free-floating planet ($sim$12 M$_{rm Jup}$) with a substantial disk that is actively accreting. We have obta
Using HST-COS FUV spectra, we have discovered warm molecular hydrogen in the TWA 7 system. TWA 7, a $sim$9 Myr old M2.5 star, has a cold debris disk and has previously shown no signs of accretion. Molecular hydrogen is expected to be extremely rare i
We have observed the Class I protostar L1489 IRS with the Atacama Millimeter/submillimeter Array (ALMA) in Band 6. The C$^{18}$O $J=$2-1 line emission shows flattened and non-axisymmetric structures in the same direction as its velocity gradient due