ﻻ يوجد ملخص باللغة العربية
We have observed the Class I protostar L1489 IRS with the Atacama Millimeter/submillimeter Array (ALMA) in Band 6. The C$^{18}$O $J=$2-1 line emission shows flattened and non-axisymmetric structures in the same direction as its velocity gradient due to rotation. We discovered that the C$^{18}$O emission shows dips at a radius of ~200-300 au while the 1.3 mm continuum emission extends smoothly up to r~400 au. At the radius of the C$^{18}$O dips, the rotational axis of the outer portion appears to be tilted by ~15 degrees from that of the inner component. Both the inner and outer components with respect to the C$^{18}$O dips exhibit the $r^{-0.5}$ Keplerian rotation profiles until r~600 au. These results not only indicate that a Keplerian disk extends up to ~600 au but also that the disk is warped. We constructed a three dimensional warped disk model rotating at the Keplerian velocity, and demonstrated that the warped disk model reproduces main observed features in the velocity channel maps and the PV diagrams. Such a warped disk system can form by mass accretion from a misaligned envelope. We also discuss a possible disk evolution scenario based on comparisons of disk radii and masses between Class I and Class II sources.
We present sensitive and high angular resolution ($sim$0.2-0.3$$) (sub)millimeter (230 and 345 GHz) continuum and CO(2$-$1)/CO(3$-$2) line archive observations of the disk star system in UX Tauri carried out with ALMA (The Atacama Large Millimeter/Su
Sub-millimeter spectral line and continuum emission from the protoplanetary disks and envelopes of protostars are powerful probes of their structure, chemistry, and dynamics. Here we present a benchmark study of our modeling code, RadChemT, that for
Complex organic molecules (COMs), which are the seeds of prebiotic material and precursors of amino acids and sugars, form in the icy mantles of circumstellar dust grains but cannot be detected remotely unless they are heated and released to the gas
We perform a comparative numerical hydrodynamics study of embedded protostellar disks formed as a result of the gravitational collapse of cloud cores of distinct mass (M_cl=0.2--1.7 M_sun) and ratio of rotational to gravitational energy (beta=0.0028-
The chemical composition of planets is inherited from that of the protoplanetary disk at the time of planet formation. Increasing observational evidence suggests that planet formation occurs in less than 1 Myr. This motivates the need for spatially r